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Foreword
We hope that you, as friends and colleagues, along with your families and your loved ones, 
are all in good health and good spirits.

The Research Journal of Mathematics and Technology (RJMT) is a printed forum for the 
publication of selected papers from the Electronic Journal of Mathematics and Technology 
(eJMT: http://ejmt.mathandtech.org/). One of eJMT’s goals is to publish peer-reviewed 
papers demonstrating how “technology” can be utilized to make mathematics and its 
applications fun (F), accessible (A), challenging (C), and theoretical (T).

The first four papers of this issue are from the February 2025 eJMT issue. The second four 
papers are from the October 2024 eJMT issue. As you read these eight papers, you will see 
discussions of different areas of mathematics using various technologies. There are several 
papers exploring the innovative use of technological tools in discovering mathematics. We 
hope these creative ways of experimenting with mathematics will be beneficial to you and 
your students. As you do so, we encourage you to write about your experiences for future 
issues of eJMT. Instructions for preparing and submitting papers to eJMT can be found 
online at https://ejmt.mathandtech.org/SubmissionGuidelines.html.

As this edition of RJMT is being prepared, we are planning the 30th ATCM (Asian 
Technology Conference in Mathematics: https://atcm.mathandtech.org/) to be held in hybrid 
format from December 13-16, 2025, which is to be held at ATENEO DE MANILA 
UNIVERSITY, Quezon City, Philippines. Thank you all for your continued support of eJMT,
RJMT, and ATCM.

Mirosław Majewski Wei-Ch Yang
Guest Editor Editor-in-chief

https://atcm.mathandtech.org/
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Abstract
We explore with technological tools on some problems that originated from a college

practice entrance question (see [12]). The problems involve an affi ne transformation whose
image is a locus based on lines passing through a fixed point (see Figure 1(a) or 1(b)),
which has been explored in ([17], [18], [19], [20]) by using parametric equations. We are
interested in the topological structures for the shapes of image curves or surfaces when
the scaling factor s vary. We found the value for s which affects the topological structures
for the loci in 2D first, and we extend the results to 3D based on the arguments in 2D.
Finally, we include an exploration on the topological structure for the locus ellipsoid when
scaling factor s and the fixed point A approach to infinity.

1 ACollege Entrance ExamPractice Problem fromChina

We explore a problem that originated from a college practice entrance problem (see [12]).
Explorations: We are given a fixed circle and a fixed point A in the interior of the circle

(x−a)2+(y−b)2 = r2. A line passes through A and intersects the circle at C and D respectively,
and the point E is the midpoint of CD. Find the locus of E when C moves along the circle.
This problem has been discussed using parametric equation approaches in 2D and 3D, see

([17], [18], [19], [20]). In this paper, we will use the implicit equation of the locus and assume the
fixed A = (a1, a2) to be outside the circle or the ellipse. We are given a fixed point A = (a1, a2)
and the lines passing through this fixed point to intersect a conic c : x2 + qy2 = 1 at C and D
(q > 0). The point E lies on CD and satisfies

−−→
ED = s · −−→CD, (1)

where s is a given real number. For convenience, we sometimes write this as

E = sC + (1− s)D. (2)
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Since D is one of the points of intersection between the line passing through A and the conic
c, sometimes we call D as the antipodal point of the point C. We remind the readers that a
generalized plane quartic curve is a bivariate quartic equation (see [16]). Our aim is to study
the topology of the obtained parametrized quartic curve C(a1, a2, q, s;x, y), and determine the
value(s) of s which will change the topological structures for the quartic curve C(a1, a2, q, s;x, y),
and we extend the results to 3D accordingly.

2 Preliminary

A topological space is a non-empty set together with a topological structure that is given by
the open sets of the topology. A non-empty set X can be equipped with different topological
structures, and any subset A ⊂ X can be endowed with an inherited topological structure,
namely, the relative topology: the open sets in the relative topology on A are exactly the
subsets of the form A ∩O for some open sets O of X.
For the spaces Rn, with coordinates (x1, . . . , xn), the usual topological structure is given by

a base of open balls, which is defined by the metric space structure of Rn. Recall that themetric
function d(x, y) =

√
(x1 − y1)2 + · · · (xn − yn)2, for x = (x1, . . . , xn) and y = (y1, . . . , yn)makes

(Rn, d) a metric space. This metric gives rise to open balls Bε(x) = {y ∈ Rn | d(x, y) < ε},
where ε is a positive real number, which are the basic open sets for the usual topology on Rn.
Thus, any curve or any hyper-surface in Rn can be viewed as topological spaces with their

respective relative topologies, acquired from the space in which they are embedded. For the
cases we are interested in, the environment spaces will be simply R2 or R3; thus, we can view
these curves and surfaces as relative topological spaces on which we can apply topological tools
that are introduced in what follows.
Now, let us recall a fundamental concept in topology, namely that of continuity. Let (X, τX)

and (Y, τY ) be two topological spaces, with τX and τY their respective topologies. A function
f : X −→ Y is continuous if for any open set O ⊂ Y it holds that f−1(O) ⊂ X is open in X.
Here, the notation f−1(U) denotes the inverse image, in X, of U ⊂ Y .
When f is bijection, then it has an inverse f−1 : Y −→ X defined by: for any y ∈ Y ,

f−1(y) = x ∈ X if and only if f(x) = y. We say that f is a homeomorphism if it is a
continuous bijection and with f−1 also being continuous. In this situation, X and Y are said
to be homeomorphic topological spaces.
Homeomorphisms between topological spaces are also called continuous transformations, or

topological transformations. Intuitively, these transformations can be thought of as functions
that transform points of one space, that are arbitrarily close to each other, onto points of
another space that are also arbitrarily close. Spaces that are related in this way are said to be
topologically equivalent. In a technical sense, we have to be careful with the notion of closeness
since it only makes sense when we can measure distances in a space, so we need to have a metric
structure. Nevertheless, that is what we meant by “intuitively”. It is intuitively evident that
all simple closed curves in the plane and all closed polygons are topologically equivalent to a
circle. Similarly, all closed cylinders, closed cones, convex polyhedra, and other simple closed
surfaces are topologically equivalent to a sphere.
For the problem described in the“Exploration”, now we are interested in a fixed point A

outside of a given conic. For example, the loci in red are shown in Figures 1(a) and (b), when
the fixed point A is outside a circle, x2 + y2 = r2. More specifically, we encourage the readers

The Research Journal of Mathematics and Technology, Volume 14, Number 1 

Page 2 of 133



to use their favorite DGS (Dynamic Geometry System) tools to explore the followings:

1. WhenA = (1.598024, 0.6045678), s = 0.25 and r = 2, we provide such case in the following
screenshot using [2] in Figure 1(a).

Figure 1(a) (left). The fixed point A is outside the circle and s = 0.25

Figure 1(b) (right). The fixed point A is outside the circle and s = 1.43

2. If A = (1.6019543,−2.2343767) is outside the circle, and s = 1.43, the locus is shown in
Figure 1(b).

Among other techniques, we used the automated GeoGebra Discovery (see [3]) to obtain
the accurate locus by computing the locus equation for the investigated geometric setups au-
tomatically. The following table explains how a possible construction protocol can be given by
the user to get a quartic polynomial equation for the case s = −1.5, A = (2, 1), if the unit circle
is used. Recent versions of GeoGebra Discovery allow the use of the Dilate tool in a symbolic
environment, therefore it is expected to get the output locus equation very quickly. As of today,
version 2024Jun29 can compute and plot the corresponding quartic curves at about 9.9 frames
per second.

No. Name Icon Description Definition Value
1 Number s s = −1.5
2 Point A A = (2, 1)
3 Point O Intersection of xAxis and yAxis Intersect (xAxis, yAxis) O = (0, 0)
4 Point U Point on xAxis Point (xAxis) U = (1, 0)
5 Circle c Circle through U with center O Circle (O,U) c : x2 + y2 = 1
6 Point D Point on c Point (c) D = (0.53, 0.85)
7 Line l Line A, D Line (A,D) l : 0.15x − 1.47y =

−1.16
8 Point C Intersection of c and l Intersect (c, `, 2) C = (−0.7, 0.71)
9 Point E C dilated by factor s from D Dilate (C, s,D) E = (2.39, 1.04)
10 Implicit Curve eq1 LocusEquation(E, D) LocusEquation (E,D) eq1 : x4−4x3+2x2y2−

2x2y + 4x2 − 4xy2 −
60xy+64x+y4−2y3+
49y2 + 32y = 80
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2.1 The special case of a circle

We consider the circle when a1 = 0, a2 is any real number, q = 1, and by using symmetry, the
fixed point A = (0, a2) on the y-axis can be assumed. For example, we use [4] to demonstrate
such a scenario in the following Figure 1(c).

Figure 1(c). Locus in red

Intuitively, we see that the topological structures for the loci, shown in red color, in Figures 1(b)
and (c) are different. The Figure 1(b) looks like a figure 8 with one point of self-intersection, and
Figure 1(c) is not and has a cusp. Therefore, we say that the Figure 1(b) is not topologically
equivalent to the Figure 1(c). In this exploration, we study the topology of the obtained family
of parametrized quartic curves, which is denoted by C(a1, a2, q, s;x, y). We shall prove that the
topology is changing at

s =
1±

√
a21 + qa22
2

.

We proceed with the following steps:

1. We look for the algebraic equations for points on a circle, collinearity and dilation.

2. We use elimination, by choosing a sensible polynomial factor of the generator polynomial
p of the elimination ideal, so a parametrized curve C can be obtained.

3. The solutions of the equation system {C = 0, dC
dx

= 0, dC
dy

= 0} can help to find the critical
points of all possible curves.
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2.2 System of equations for the special case of a circle

We consider the system of equations for C(a1 = 0, a2, q = 1, s;x, y), where a2 is any real number:

e1 := c21 + c22 = 1, e2 := d21 + d22 = 1,

e3 := det

c1 c2 1
d1 d2 1
0 a2 1

 = 0,

e4 := x− d1 = s · (c1 − d1),
e5 := y − d2 = s · (c2 − d2),
I := 〈e1, e2, . . . , e5〉 ∩Q[a2, s, x, y], 〈p〉 := I, C | p,

S := {C = 0,
dC
dx

= 0,
dC
dy

= 0}.

The following Giac code (see [5]) solves the system:

e1:=d1^2+d2^2=1
e2:=c1^2+c2^2=1
e3:=det([c1,c2,1],[d1,d2,1],[0,a2,1])
e4:=x-d1=s*(c1-d1)
e5:=y-d2=s*(c2-d2)
I:=eliminate([e1,e2,e3,e4,e5],[c1,c2,d1,d2])
p:=I[0]
c:=(factor(p))[2]
dcx:=diff(c,x)
dcy:=diff(c,y)
S:=solve([c,dcx,dcy],[x,y,s])

In view of the intermediate step, when computing the principal ideal I = 〈p〉 , is of the form

p =
(
x2 + y2 − 1

) 4a22x
2s2 − 4a22x

2s+ a22x
2 − 4a22s

2 + 4a22s+ a22y
2 − a22

−2a2x
2y + 8a2s

2y − 8a2sy − 2a2y
3 + 2a2y

+x4 − 4x2s2 + 4x2s+ 2x2y2 − x2 − 4s2y2 + 4sy2 + y4 − y2

 , (3)

we note that the first factor corresponds to a degenerate case. Therefore, we only need the
second factor in the next intermediate step: c:=(factor(p))[2].
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Solution (with Giac), computed via Gröbner bases and other techniques:

(x, y, s) = {
(0, a2, 0) ,

(0, a2, 1) ,(
±
√
−y2 + a2y, y,

1

2

)
,(

0, a2,
1± a2

2

)
,(

0, a2,
1

2

)
,

(0, a2, s)

}.

Geometrically, only the solution x = 0 makes sense. Assuming a special case a2 = 2,
the candidates for s are: 0, 1, 3

2
,−1

2
, 1
2
. We shall see when s = 3

2
or −1

2
(which produces the

same locus), is the boundary where the topology of the locus changes. We check the algebraic
solutions geometrically as follows:

Example 1 We consider the circle when a1 = 0, a2 = 2, q = 1, the fixed point A = (0, a2),
and s = 0, 1

2
, 1, 3

2
,−1

2
. The loci are depicted in red in Figure 2(a)-2(e) respectively using [4]. In

addition, we include the corresponding GeoGebra file in [S1] for further explorations.

Figure 2(a). Locus when
s = 0

Figure 2(b). Locus when
s = 0.5

Figure 2(c). Locus when
s = 1
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Figure 2(d). Locus when s = 1.5 Figure 2(e). Locus when s = −0.5

3 Generalization to an ellipse and a special external point
A

We consider the general ellipse of x2 + qy2 = 1, a quartic curve C(a1 = 0, a2, q > 0, s;x, y). We
have the following equations:

e1 := c21 + qc22 = 1,
e2 := d21 + qd22 = 1,

e3 := det

c1 c2 1
d1 d2 1
0 a2 1

 = 0,

e4 := x− d1 = s · (c1 − d1),
e5 := y − d2 = s · (c2 − d2),

I := 〈e1, e2, . . . , e5〉 ∩Q[a2, s, x, y],
〈p〉 := I, C | p,

S := {C = 0, dC
dx

= 0, dC
dy

= 0}.

During an intermediate step we yield the following output of a principal ideal I = 〈p〉 ,
which is an extension of the Equation (??).

p =
(
qy2 + x2 − 1

) q2a22y
2 + 4a22qx

2s2 − 4a22qx
2s+ a22qx

2 − 4a22qs
2 + 4a22qs+ a22y

2 − a22q
−2a2qx

2y + 8a2qs
2y − 8a2qsy − 2a2q

2y3 + 2a2qy
+x4 − 4x2s2 + 4x2s+ 2qx2y2 − x2 − 4qs2y2 + 4qsy2 + qy4 − qy2

 .

Similar to the circle case, the first factor corresponds to a degenerate case, where we identify
the polynomial defining the ellipse. Therefore, we need only the second factor in the next step:
c:=(factor(p))[2].
Solution: Geometrically, only the solution x = 0 makes sense. Therefore, candidates for s

are:

0, 1,
1± a2

√
q

2
,
1

2
.
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3.1 Checking s =
1±a2

√
q

2 geometrically

Example 2 Consider the ellipse of c : x2 + qy2 = 1. If we set the fixed point A = (0, a2) with
a2 = 2 and q = 4, then s = 2.5 or s = −1.5 (which produces the same locus), is the boundary
where the topology of the locus changes. We demonstrate such a scenario in Figure 3 below.
We also include the GeoGebra file for readers to explore in [S2].

Figure 3. Locus changes its
topology when s = 2.5 or −1.5

3.2 Full generalization

1. Computation of the Gröbner bases is too diffi cult (it leads to exceeding memory resources
of more than 130 GB). We kindly thank RISC (Research Institute of Symbolic Compu-
tation, Hagenberg, Austria) for providing us with their “big memory server”to help us
attempt computing the result in the general case.

2. We used Gröbner cover instead of traditional Gröbner basis computation, by using the
computer algebra system Singular (See Appendix section for its input and output), and
the package grobcov. See [15] for more details.

3. When performing the computation, there are lots of non-geometric and degenerate pieces
of information. We searched for polynomials that contain variables a1, a2, q, s.

4. We factorized the polynomials and tried to find solutions for s that is a formula of a1, a2, q
(but not of x or y).

5. With several attempts, we get a simple factorized form:

s · (s− 1) · (2s− 1)2 · (qa22 + a21 − 4s2 + 4s− 1)2 · (y − a2),

and this is equal to 0 if, and only if, s is equal to 0, 1, 1
2
,

1±
√
a21 + qa22
2

or y = a2. (We

are interested in s, so the last result does not play a role.)
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Theorem 3 (Algebraic Interpretation) If a21 + a22q− 1 6= 0 and a21 + a22q 6= 0 and 3a21− a22q 6= 0
and q 6= 0 and a2 6= 0 and a1 6= 0, then the locus curve C(a1, a2, q, s;x, y) may change its

topology at s =
1±

√
a21 + qa22
2

.

Theorem 4 (Geometric Interpretation) If A /∈ C and a1/a2 6=
√

3/q and A is outside of the

axes, then the locus curve C(a1, a2, q, s;x, y) may change its topology at s =
1±
√
a21+qa

2
2

2
.

4 Is this still just a conjecture?

We actually obtained an algebraic statement. Its geometric counterpart should be verified!
How can this be achieved for such a large number of input cases (a1, a2 ∈ R, q ∈ R+)?

4.1 A proof based on affi ne transformations

1. Let us consider the general case C∗(a∗1, a∗2, q∗ > 0, s;x, y), and we let a1 = a∗1, a2 = a∗2
√
q∗.

2. Let us stretch the whole construction to get q = 1.
This results in a curve C (a1, a2, 1, s;x, y) because the dilation factor remains the same.
The stretching ratios are 1 :

√
q∗ with respect to x : y.

3. Since we have a circle now, it is allowed to rotate the whole construction about the origin
to have a′1 = 0. So we obtain a second curve C ′ (0, a′2, 1, s;x, y) which can be studied via
elimination without any diffi culties.

4. Since we used stretching and rotation, the topology of the curves did not change.

5. By conclusion, we learn that the general case C(a∗1, a∗2, q∗, s;x, y) can be traced back to
the case of a circle and a special point on the y-axis.

4.2 3D proof

By following the ideas from 2D:

1. We start with a fixed point A = (0, a2, 0) on the y-axis, and the ellipsoid whose equation
is

x2 + qy2 + qz2 = 1, (4)

which is obtained by rotating the ellipse x2 + qy2 = 1 around the y-axis.

2. Using the same argument about the ellipse for x2 + qy2 = 1, as explained in Section 4.1,
we prove that the topology for (4) changes at

1± a2
√
q

2
. (5)

3. For the general case of the topological problem for the ellipsoid of the form

x2 + q1y
2 + q2z

2 = 1, (6)

we may apply an affi ne transformation, and the problem for Equation (6) can be traced
back to the simple case of (4) and a special point on the y-axis.
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4.3 Checking s =
1±a2

√
q

2 geometrically for 3D

Example 5 Consider the ellipsoid

x2 + qy2 + qz2 = 1, (7)

with a fixed point A = (0, a2, 0) on the y-axis. We set a2 = 2 and q = 4 then it follows from
the corresponding 2D formula (5) that s = 2.5 (or s = −1.5), is the boundary point where the
locus changes its topology. We illustrate such scenarios in Figures 4(aa)-4(d) respectively when
s = 2.25, 2.5, 2.7 and 2.9.

Figure 4(aa). Locus
when s = 2.25

Figure 4(ab). Second view when
s = 2.25

Figure 4(ac). Third view when
s = 2.25

Figure 4(b). Locus when
s = 2.5

Figure 4(c). Locus when
s = 2.7

Figure 4(d). Locus
when s = 2.9

5 Locus Surfaces and Linear Transformations

In earlier sections, we discussed how topological structures change with respect to the parameter
s when the fixed point A is given at a finite distance from the origin. Now we summarize
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the scenario when the fixed point A is at an infinity, which has been discussed in [19]. For
completeness, we summarize it here.
It is known that the image of an ellipsoid under a linear transformation is another ellipsoid.

We proved this observation directly in [19] when the fixed point A is at an infinity. We quote
two main results from [19] as follows:

Proposition 6 If Σ is the ellipsoid x2

a2
+ y2

b2
+ z2

c2
= 1, Ainf(u0, v0) be the fixed point at an infinity

in the direction of (cosu0 sin v0, sinu0 sin v0, cos v0), C ∈ Σ and Dinf be the “antipodal” point
of C corresponding to Ainf(u0, v0) satisfying Einf = sC + (1− s)Dinf , then there exists a matrix

LeE = sI + (1− s)LeD (8)

such that LeE C = Einf , and therefore, the locus surface ∆inf(s, u0, v0) is the image of Σ under
the linear transformation given by the matrix LeE.

Proposition 7 For s ∈ R \ {1}, the ellipsoid Σ and locus ellipsoid ∆inf(s, u0, v0) intersect
themselves tangentially at an elliptical curve.

Since the locus surface ∆inf(s, u0, v0) is an ellipsoid and since Σ ⊂ ∆inf(s, u0, v0) and two
surfaces are tangent to each other. The locus surface ∆inf(s, u0, v0) becomes a longer ellipsoid
containing Σ as s increases. It is natural to imagine what will happen when s → ∞. As
one would expect that the locus ellipsoid ∆inf(s, u0, v0) in this case would be blown up to a
cylinder, which changes its topological structure, and it will not be topologically equivalent to
an ellipsoid. We use the following example from [19] for demonstration.

Example 8 We depict the locus elliptical cylinder (yellow) when a = 5, b = 4, c = 3, with
u0 = π

6
, v0 = π

3
together with the original ellipsoid (blue) in Figure 5(a). The two surfaces are

tangent to an elliptical curve as seen in Figure 5(b).

Figure 5(a). The original
ellipsoid and its locus when

s→∞.

Figure 5(b). Ellipsoid and its locus
are tangent at an elliptical curve..
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6 Conclusion

The implementation of technological tools into research and teaching has changed the approach
to old questions and also enabled the exploration of new situations, which until now seemed
out of reach. Dynamic Geometry is the most popular tool among teachers and High School
students, but some decades ago, software has been developed for more abstract domains, such as
Number Theory, Group Theory, etc.. The traditional progression definition-theorem-proof with
examples at some places has been replaced by exploration-discovery-conjecture-proof. Many
mathematical domains became experimental.
Technology provide the researcher and the learner with crucial intuitions, before an attempt

to find more rigorous analytical solutions. After experimentation with software, the question
may be : "what happens here? what can I prove here?"
In this paper, we have gained geometric intuitions while using a DGS. College entrance

exams can lead to challenging problems. Dynamic geometry software with computer algebra
extensions may suggest valid conjectures. Most of the time, a DGS leads to discovery and
conjecture, and a rigorous proof is obtained using the symbolic algebraic abilities of a CAS.
The respective roles of DGS and CAS may be versatile, depending on the topic. Generally the
DGS provides numerical support and the CAS symbolic exact work, but not always. GeoGebra
Discovery has symbolic complements to numerical commands which pre-existed in GeoGebra.
In [9], the CAS had to be used for numerical experimentation, not only the DGS. See also [8].
The working environment has changed, and the technological literacy is crucial. M. Artigue [1]
points out that technological knowledge is an integral part of the new mathematical knowledge.
We extend systems with new functionalities (like symbolic Dilation for GeoGebra Discov-

ery) that can speed up the investigation substantially. Free computer algebra systems (like
Giac) can be comparable to commercial systems.
Evolving technological tools have made mathematics fun and accessible on the one hand,

but they also allow the exploration of more challenging and theoretical mathematics. We hope
that when mathematics is made more accessible to students, more students can be attracted to
the field, and inspired to investigate problems ranging from the simple to the more challenging.
Moreover, the usage of technology may encourage greater collaborations, between humans,

and between man and machine. We give here also an example where different kinds of software
have to collaborate with humans. Communication between machines is still to be developed.
E. Roanes-Lozano [11] expressed often this wish, some progress has been made [13], but is still
quite slow. Improving technological tools among researchers in mathematics and mathematics
education, and developing all kinds of communication and collaboration, is a crucial task.
Following Shulman [14], Loewenberg et al. [10] analyze and explain the importance of changing
the teacher’s knowledge for teaching. This requires also analyzing the didactic transition [7],
from mathematical knowledge of taught knowledge ("du savoir savant" au "savoir enseigné").
We claim that working in the way we propose in this paper will not only spark new areas of
research but also increase future teachers’content knowledge at the same time.

7 Supplementary Electronic Materials

[S1] GeoGebra file for Example 1: https://www.geogebra.org/m/fjb9bzz4.

[S2] GeoGebra file for Example 2: https://www.geogebra.org/m/xeykgv7t.
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[S3] GeoGebra file for Example 5: https://www.geogebra.org/m/pkv54ee.
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8 Appendix

• Singular-input: LIB "grobcov.lib";

ring R=(0,a1,a2,q),(x,y,s),lp;
poly c=a2^2*q^2*y^2+4*a2^2*q*x^2*s^2-4*a2^2*q*x^2*s+a2^2*q*x^2
-4*a2^2*q*s^2+4*a2^2*q*s-a2^2*q-2*a2*q^2*y^3-2*a2*q*x^2*y
-8*a2*q*x*y*s^2*a1+8*a2*q*x*y*s*a1+8*a2*q*y*s^2-8*a2*q*y*s
+2*a2*q*y+q^2*y^4+2*q*x^2*y^2-2*q*x*y^2*a1+4*q*y^2*s^2*a1^2
-4*q*y^2*s^2-4*q*y^2*s*a1^2+4*q*y^2*s+q*y^2*a1^2-q*y^2
+x^4-2*x^3*a1-4*x^2*s^2+4*x^2*s+x^2*a1^2-x^2+8*x*s^2*a1
-8*x*s*a1+2*x*a1-4*s^2*a1^2+4*s*a1^2-a1^2;
poly dcx=4*a2^2*q*2*x*s^2-4*a2^2*q*2*x*s+a2^2*q*2*x-2*a2*q*2*x*y
-8*a2*q*y*s^2*a1+8*a2*q*y*s*a1+2*q*2*x*y^2-2*q*y^2*a1+4*x^3
-2*3*x^2*a1-4*2*x*s^2+4*2*x*s+2*x*a1^2-2*x+8*s^2*a1-8*s*a1+2*a1;
poly dcy=a2^2*q^2*2*y-2*a2*q^2*3*y^2-2*a2*q*x^2-8*a2*q*x*s^2*a1
+8*a2*q*x*s*a1+8*a2*q*s^2-8*a2*q*s+2*a2*q+q^2*4*y^3+2*q*x^2*2*y
-2*q*x*2*y*a1+4*q*2*y*s^2*a1^2-4*q*2*y*s^2-4*q*2*y*s*a1^2
+4*q*2*y*s+q*2*y*a1^2-q*2*y;
ideal I=c,dcx,dcy;
short=0;
grobcov(I); // the input is less than 900 characters

• Singular-output file can be found in this link:

https://ejmt.mathandtech.org/Contents/v19n1p1/singular-output.pdf.
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Abstract
Regression outliers, high leverage points, and influential observations are commonly taught in
statistics courses in which regression methods are covered – from the introductory to the advanced
levels. When covering these topics, it is typical to discuss various methods that exist for determining
whether a point is one of these types – such as Cook’s distance or DFFITS. Yet while these topics are
routinely covered, it can be difficult for instructors to graphically illustrate whether observations are
outliers, high leverage points, or influential observations based on the methods and their associated
criteria. To address this shortcoming, in this article, a free, web-based app created by the author, which
focuses on influential and related observations, is described, with intended usage by both faculty and
students. Faculty feedback, which highlights the accessibility, ease of use, and usefulness of the app, is
also discussed.

1. Introduction
Regression outliers, high leverage points, and influential observations are topics commonly taught in
statistics courses that cover regression. A point is deemed a regression outlier if it falls outside of the
overall trend or pattern of the data (particularly in the ᵆ�-direction), and a high leverage point if it is
extreme in the ᵆ�-direction (typically relative to the mean of the ᵆ�-values). A point is then considered
to be potentially influential if it is both a regression outlier and a high leverage point. Various
measures and cutoffs are used to determine if a value is one of the aforementioned types. For instance,
the standard deviation of the residuals and studentized residuals are commonly used to assess whether
a point is a regression outlier; the leverage statistic (also known as the hat value) is used for high
leverage points; and Cook’s distance, DFFITS, and DFBETAS can be used to examine whether a
point is potentially influential.

While teaching regression outliers, high leverage points, and influential points is common, it
is perhaps most beneficial to pair them with a graphical tool when explaining them in a simple linear
regression setting. This is due to the fact that it has been found that visualizations can boost the ability
of students to understand new concepts [2, 4, 11]. To facilitate these efforts, the author of the article
created a free, web-based application that implements the aforementioned methods for detecting
potential points of the three types.

The article proceeds as follows. In Section 2, the use of real data in the classroom is discussed,
as are recommended characteristics for evaluating statistical tools. Then, in Section 3, a description
and example of the app is provided. Next, in Section 4, a survey given to faculty who teach statistics
regularly is described and the results discussed. Lastly, the article is summarized in Section 5.
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2. Background
Numerous articles have focused on the importance of using real data, technology, and active learning
in the classroom. For instance, Garfield and Ben-Zvi [6], Garfield and Everson [7], and Neumann,
Hood, and Neumann [10] focus on statistical reasoning in introductory statistics courses, while
others, including Rumsey [15] and Singer and Willett [18] have discovered that students participate
more when real world situations and data are utilized.

Of course, when real world data is involved, oftentimes it is not as ‘clean’ as one might hope
for. For instance, the violation of assumptions for a particular statistical method (e.g., due to the
presence of outliers) can lead to the potential for misleading or even invalid conclusions to be drawn
without proper care being taken. As far as regression is concerned, regression outliers, high leverage
points, and/or influential points can lead to such issues. To this end, anyone running a regression
analysis should fully understand these types of data points and how they can produce such issues.

A plethora of tools exist that enable users to run regression analyses, including point-and-click
programs and programming languages. Point-and-click programs include JMP, SPSS, JASP [8],
StatCrunch [12], and Rguroo [17], among others. While some of these programs enable the
calculation of certain statistics for assessing whether a point might be a regression outlier, high
leverage point, or influential point, the programs typically calculate the measure of interest and report
its values, such as in the form of a new column in the original dataset, rather than displaying them
graphically. Or, if the program does plot the values, it might do so in a separate plot. Some
programming languages also enable users to run regression analyses, such as R, Python, MATLAB,
and Stata (while not a programming language itself, it has programming languages built in), among
others. While the calculation of the measures of interest is not always particularly burdensome using
these languages, a specialized knowledge of the languages is required in order to accomplish various
things that the proposed app has built in automatically, such as:

 interactively moving points in a scatterplot (which is not even doable using some languages)
and viewing the potential impact on regression statistics,

 adding statistic values (e.g., Cook’s distance or DFFITS values) to a scatterplot, and
 quickly and easily identifying which observations in a dataset are potential outliers, high

leverage points, or influential points based on the statistic of interest.

In fact, none of the aforementioned tools – point-and-click programs or programming languages –
(to the author’s knowledge) provides a ‘ready-to-go’ tool for the visual exploration of potential
regression outliers, high leverage points, or influential points via the commonly-used statistics
discussed in Section 1, all in a single scatterplot. Of course, one could create an interactive tool (like
the author did) using certain programming languages such as R, but that would require specialized
knowledge of the language, which is not expected of the vast majority of students learning regression
or instructors teaching it.

In order to evaluate technological tools, Biehler [1], McNamara [9], and Repenning [14]
provide attributes to consider. In particular, McNamara focuses on ten key characteristics for
evaluating tools for statistical computing. However, due to the proposed app’s focus on the plotting
and fitting of data, the six characteristics included in Table 1 – all of which are possessed by the app
– are of particular interest. The table also explains how the app meets each characteristic.
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Table 1. The proposed application in relation to characteristics recommended by McNamara [9].

Characteristic How the App Possesses the Characteristic

“Be accessible” The app is free to use and simply requires a web
browser.

“Provide easy entry” The app has a point-and-click interface and does
not require any programming background.

“Privilege data as a first-order object” The app requires users to input data, with the
resulting scatterplot and regression output
focused on that data.

“Support exploratory and confirmatory 
analysis”

The app enables users to explore their data via
the scatterplot and associated regression
statistics. It also provides users with desired
statistics for determining whether a point might
be an outlier, high leverage point, or influential
point.

“Allow for flexible plot creation” The app automatically creates a scatterplot for
users and allows users to customize the axes.

“Be interactive” The app utilizes the plotly [16] package in R
[13], enabling users to manually move points
displayed in the scatterplot.

3. Description and example of the application
A description of the Influential Points application is now provided. The app was created using the
shiny package [5] in R [13] and is free to access at
https://educationapps.shinyapps.io/InfluentialPoints. The app utilizes various R packages, but most
notably it uses rio [3] for flexible data importing and plotly [16] for interactive plotting. Strengths of
the app are now discussed, followed by an example of its usage.

3.1 Strengths of the app
The app possesses various strengths, including the following:

 The app is accessible via the internet. In fact, it can be accessed via any device with internet
access (e.g., laptops, tablets, and even smartphones).

 The app is free to use by both faculty and students.
 Users have the option to either manually input data or upload a dataset using files of various

common types – e.g., .csv, .xlsx, .sav, and .txt, among others.

 The app displays values for common methods of detecting regression outliers, high leverage
points, and influential points, including the standard deviation of the residuals, studentized
residuals, leverage values (i.e., hat values), Cook’s distance, DFFITS, and DFBETAS.

 Users can manually move individual points on the scatterplot to examine the potential impact
of outliers, high leverage points, or influential points on regression output. For instance, they
can see how the slope, ᵆ�-intercept, correlation coefficient, r-squared, standard deviation of
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the residuals, and the p-value (when testing the slope) do or do not change as a result of one
of these types of points.

3.2 Example using the app
An example of the app’s usage is now provided using real-world data collected in an introductory
statistics course. The dataset contains data on houses, including the selling price, house size, number
of bedrooms, and number of bathrooms, among other variables. The focus of the example is on
regressing selling price (measured in U.S. dollars) on house size (measured in square feet).

When the user opens the app, they are immediately taken to the ‘Home’ tab, which displays
instructions for how to use the app, as can be seen in Figure 1.

Figure 1. After opening the app, the user starts in the ‘Home’ tab, which contains instructions for
how to navigate the app.

After reading the instructions, the user should click on the ‘Input Data’ dropdown menu at
the top of the app, where they can either upload a dataset or manually input data. In this case, the
user can quickly and easily upload their existing dataset. As Figure 2 displays, the user has clicked
the “Browse…” button to select the dataset from their computer and then clicked the blue ‘Store
Dataset’ button to store the dataset in the app for further usage.

Once they have uploaded their dataset, the user then navigates to the ‘Explore Data’ tab found
at the top of the app. There, they start by selecting the two variables of interest (X and Y) from the
respective dropdown menus, and they then click the blue ‘Make Plot’ button to make a scatterplot of
the selected data. Figure 3 displays the resulting scatterplot when regressing selling price on house
size, as well as the regression output, which includes the ᵆ�-intercept and slope of the regression line,
the correlation coefficient, r-squared, the standard deviation of the residuals, and the p-value for
testing the slope of the regression line. Additionally, users have the option of customizing the ᵆ�-axis
and ᵆ�-axis labels, as is done in Figure 3.

When examining the scatterplot, the user should look for potential regression outliers, high
leverage points, and influential points, as those types of observations are the main focus of the app. 
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Figure 2. The user can upload a dataset in the ‘Input Data’ tab. After the user clicks the ‘Store Dataset’
button, the uploaded dataset is displayed in the app.

Figure 3. A scatterplot of the user’s data can be found in the ‘Explore Plot’ tab. Below the plot,
regression statistics such as the ᵆ�-intercept and slope of the regression line, correlation coefficient,
r-squared, standard deviation of the residuals, and p-value (when testing the slope of the line) are
printed. Additionally, the user has the option of customizing the axis labels, as is done here.
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However, while a visual assessment can be helpful, determining whether an observation is a
regression outlier, high leverage point, or influential point in this way is a subjective approach. For a
more objective method, people analyzing data oftentimes turn to statistical measures. For instance,
when assessing whether an observation is a regression outlier, two commonly-used statistics are the
standard deviation of the residuals and studentized residuals, both of which are built into the app. To
visually assess observations using the standard deviation of the residuals, the user should click the
button corresponding to ‘SD of residuals lines’ for the measure of interest found in ‘Step 3.’ After
the user has made this selection, lines are plotted in the scatterplot at values that are two (orange) and
three (red) standard deviations (of the residuals) from the regression line. Any observation that falls
beyond the preferred set of lines (i.e., above the orange/red lines located above the regression line or
below the orange/red lines found below the regression line) is a potential regression outlier. Of
course, users likely want to be able to easily determine which observations in the dataset are potential
outliers (i.e., the row numbers). In fact, the app provides users with this option. The user can simply
check the checkbox labeled ‘View Observations in Original Dataset Identified by Selected Measure,’
which is found in the bottom-right-hand corner of the app. Figure 4 displays the scatterplot of the
housing data with the orange and red lines added, as well as the row numbers of the observations that
are deemed potential outliers by falling more than two standard deviations from the regression line.
While not shown in Figure 4, the app also prints the observations that are more than three standard
deviations from the regression line in the bottom-right-hand corner.

Figure 4. When the user clicks the ‘SD of residuals lines’ button in ‘Step 3,’ lines are superimposed
at two (orange) and three (red) standard deviations (of the residuals) from the regression line. Here,
11 observations are potential regression outliers, as they lie more than two standard deviations from
the regression line. Users can view which observations those are in the bottom-right-hand corner.
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The other common statistic used for regression outliers is the studentized residual. To work
with this statistic in the app, the user simply clicks the button corresponding to ‘Studentized residuals’

for the measure of interest. They then input a value for the desired cutoff, which represents the value
such that any observation that takes on a statistic value (e.g., studentized residual) of that number or
larger is identified in the scatterplot, along with the value. Figure 5 displays the output after inputting
a value of two for the cutoff, with purple line segments drawn from individual points to the regression
line (and studentized residual values added to the plot) when points are deemed regression outliers
based on the studentized residual cutoff of two specified by the user.

Figure 5. When the user clicks the ‘Studentized residuals’ button and inputs a cutoff (here, two) for
detecting regression outliers using this statistic, the observations with studentized residual values
equal to or above the cutoff can be identified graphically in the scatterplot, with the respective
studentized residual values displayed in purple. The row numbers corresponding to those points are
printed in the bottom-right-hand corner of the app. In this case, with the specified cutoff of two, there
are 12 potential regression outliers. Of course, this cutoff is quite conservative, and there would be
fewer outliers if a cutoff of three were used instead.

When assessing whether an observation is influential, three typical statistics one can use are
Cook’s distance, DFFITS, and DFBETAS. To work with Cook’s distance in the app, the user simply
needs to click the ‘Cooks distance’ button and input a cutoff value. Figure 6 displays the output for
the housing example based on a conservative Cook’s distance cutoff of 0.5 (where a smaller cutoff 
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Figure 6. After the user clicks the ‘Cooks distance’ button and inputs a Cook’s distance cutoff (0.5
here), any observations with a Cook’s distance of the specified cutoff or larger is potentially
influential. Here, two observations might be influential based on the user’s selections.

would be less conservative). Based on the output, two observations are classified as potential
influential observations based on Cook’s distance with a cutoff of 0.5.

DFFITS and DFBETAS are also built into the app when exploring potential influential
observations, as is leverage when assessing whether any points have high leverage. While the author
has chosen to leave out screenshots of the app when working with these statistics, users should note
that the steps are similar to those when working with Cook’s distance. The user simply selects the
button corresponding to the statistic of interest and inputs a cutoff, after which the app displays (in
the scatterplot) the statistic values for the observations that meet the criteria. Users also have the
option to view the row numbers of the identified observations, in the same way as before.

In addition to providing users with various options for detecting potential regression outliers,
high leverage points, and influential points, the app enables users to interactively explore these types
of observations. Users can do so by clicking and dragging individual points in the scatterplot. This
method of exploration is aimed at helping statistics students better understand the differences among
regression outliers, high leverage points, and influential points. When moving a point in the
scatterplot, users can view the potential effect of individual observations on the regression output.
To enable users to assess the potential impact of moving a point on regression statistics (e.g., the
regression coefficients or r-squared), both the original regression output and the new regression
output (i.e., the output after moving a point) are displayed, as are any updated statistic values (e.g.,
studentized residuals or Cook’s distance).

Returning to the housing example, the focus moving forward will be on the point located at
coordinates of approximately (3,000, 350,000), as seen in Figures 3-6. Suppose the user moves that
point to coordinates of approximately (3,000, 700,000), as Figure 7 shows. The new point is a
potential regression outlier due to its location outside of the overall trend of the data in the vertical
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direction, but it is not a high leverage point because its location is not extreme in the horizontal
direction relative to the other data. Since the point does not have high leverage, it is not influential.
In fact, a comparison of the original and new regression output found below the scatterplot supports
the lack of influence of this regression outlier, as the regression statistics across the two sets of output
are quite similar. Additionally, the Cook’s distance for that point is under 0.5 (since it is not identified
in the plot as having a Cook’s distance of at least 0.5), adding even more support to the point’s lack
of influence.

Figure 7. In the scatterplot, the point originally at coordinates of approximately (3,000, 350,000) has
been moved to coordinates of approximately (3,000, 700,000). After the move, the observation is a
potential regression outlier, but not a high leverage point, and thus is not an influential observation
(which is also confirmed by the observation’s small Cook’s distance).

After resetting the plot by clicking the red ‘Reset Plot’ button, suppose the user now moves
the same point of interest (i.e., the one originally located at coordinates of roughly (3,000, 350,000))
to coordinates of roughly (6,000, 350,000), as seen in Figure 8. The new point is a potential high
leverage point due to its extreme horizontal location relative to most of the other data values, but it
is not a regression outlier because it is not particularly extreme in the vertical direction. As a result,
the point is not influential. A comparison of the original and new regression output found below the
scatterplot supports the lack of influence of this point, as the regression statistics across the two sets
of output are quite similar. The observation’s Cook’s distance also supports the lack of influence.

After resetting the plot once again by clicking the ‘Reset Plot’ button, suppose the user now
moves the same point of interest (i.e., the one originally located at coordinates of roughly (3,000, 
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Figure 8. In the scatterplot, the point originally at coordinates of approximately (3,000, 350,000) has
been moved to coordinates of approximately (6,000, 350,000). After the move, the observation is a
potential high leverage point, but not a regression outlier, and is therefore not an influential
observation (which is also confirmed by the observation’s small Cook’s distance).

350,000)) to coordinates of roughly (5,000, 1,600,000), as seen in Figure 9. The new point is
potentially both a regression outlier and a high leverage point due to its falling outside of the overall
pattern of the data as well as its extreme horizontal location relative to most of the other data values.
As a result, the point is potentially influential. A comparison of the original and new regression output
found below the scatterplot indicates the influence of this point, as the regression statistics across the
two sets of output are noticeably different. In fact, the observation’s Cook’s distance of 2.17 is
substantially larger than 0.5, which also supports the influence of the observation on the analysis.

While the previous examples of moving a point throughout the scatterplot can be used to
explain potential regression outliers, high leverage points, and influential points, users could
additionally have the app calculate other measures that were discussed previously in this section (e.g.,
studentized residuals and leverage). By doing so, instructors and students could then fully tie together
all of the ideas discussed in this article.

A final important note regarding moving points in the scatterplot is that the author is in no
way suggesting users modify their data when running a regression analysis in practice. The app was
developed specifically for pedagogical purposes: to assist (1) faculty when teaching regression
outliers, high leverage points, and influential points, and (2) students when learning these important
concepts.
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Figure 9. In the scatterplot, the point originally at coordinates of approximately (3,000, 350,000) has
been moved to coordinates of approximately (5,000, 1,600,000). After the move, the observation is
potentially influential, as it is appears to be both a regression outlier and a high leverage point. The
observation’s large Cook’s distance also supports its influence.

4. Assessment of the application
An online survey focused on obtaining feedback from faculty after exploring the app described in
this article is now discussed. The survey, which was created by the author and conducted using
Qualtrics, was emailed to ten faculty members at Fairfield University, a comprehensive university
with more than 6,000 undergraduate and graduate students, during the Fall 2024 semester. All ten of
the faculty members regularly teach statistics courses that cover regression. The survey was exempt
from review by the Institutional Review Board at Fairfield University and included a required
question asking if participants give their consent for their responses to be used anonymously for the
study. Of the ten faculty contacted, four responded to the survey, with each of the four giving their
consent for their responses to be used anonymously for the study.

While the full survey can be found in the Appendix, the statements and questions contained
within it focused on the accessibility, ease of use, and usefulness of the app, with Likert-scale
response options provided for each of the statements and open-ended text box responses provided
for the questions. The responses to each of the Likert-scale statements are summarized in Table 2.
For each statement, 100% of the respondents provided positive responses about the app – consisting
of either “Agree” or “Strongly Agree” for the positively worded statements (with a single exception
of “Neutral” for one statement), and either “Disagree” or “Strongly Disagree” for the negatively
worded statement.
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Table 2. Faculty responses to Likert-scale statements about the Influential Points application.

Statement: Main Idea Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

App easy to access 0 0 0 1 3
App difficult to use 2 2 0 0 0
App includes all desired 
implementations of methods
for assessing regression 
outliers and related points

0 0 1 0 3

Dragging individual points 
in the scatterplot helpful

0 0 0 2 2

Plan on using app when 
teaching these concepts

0 0 0 0 4

The survey then included open-ended questions asking what the respondents found most
useful about the app, whether or not there are any features the app does not provide that the faculty
member would find useful, and what they did not like about the app, along with suggestions for
improvement. When responding to what they found most useful about the app, faculty said:

 “It is easy and straightforward to use the app and students will surely benefit from getting a
visual representation of how outliers in responses and/or predictors affect the linear regression
fit.”

 “Availability of [a] ‘missing value’ check box; points are easy to move and manipulate; stores
the original output so making comparisons becomes easier; allows me to use different metrics
for high leverage/[influential] points.”

 “The ability to quickly switch between methods to identify high leverage points.”
 “Ease of use, and the wide variety of tools it has preprogrammed.”

When asked if there are any features the app does not provide that they would find useful, two
respondents indicated there are not, while one indicated they would like to see a table below the
original regression output that lists the row information for all of the data points that meet the different
criteria. Further, when asked what they did not like about the app, none of the faculty had anything
negative to say. When asked about anything that could be improved, three did provide suggestions,
all of which were minor in nature:

 “Since there are several methods to visualize high leverage points, perhaps a way for a user
to access a definition of each method.”

  “The instruction[s] could mention the location of the ‘explore plot’.”
 “I wonder if it was possible to add x-axis and y-axis labels on the plot.”

Additional positive feedback about the app was left in response to the final question, including:

 “It was easy to use. No changes to suggest.”
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 “I liked all the aspects of the app, including the fact that the plot can be downloaded as a
png.”

In response to the constructive feedback provided by the faculty members, the author made
the following changes to the app:

 The addition of a ‘Home’ tab that contains instructions for how to navigate the app.
 The addition of a table, located in the ‘Explore Plot’ tab, that lists the row information for

each data point that meets the criteria specified by the user.

 The ability to add custom ᵆ�-axis and ᵆ�-axis labels to the scatterplot in the ‘Explore Plot’ tab.

 The addition of a ‘Help’ tab that contains URL links to websites that provide details of the
methods implemented.

5. Conclusion
In this article, a free, web-based application (created by the author) for use by statistics instructors
and students when covering regression outliers, high leverage points, and influential observations is
described. Feedback provided by faculty members who tested the app highlights the ease of access,
ease of use, and usefulness of the app. The author’s hope is that the app will be helpful in both faculty
instruction and student comprehension of regression outliers, high leverage points, and influential
points at all levels of the statistics curriculum and in far-reaching disciplines. Potential future work
includes an evaluation of the tool by statistics students, a formal assessment of the effectiveness of
the tool in improving student comprehension of the concepts implemented within it, and the
development of another app (or an extension of the current app) focused on these types of
observations in multiple linear regression settings.
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Appendix
The online survey sent to faculty regarding the app can be found below.

1. Do you permit the use of your responses in a study that will be submitted for publication in a 
journal?  Note that no identifying information will be included, and your responses will remain 
anonymous. [required question]

a. Yes, I give my consent for my responses to be used anonymously for the study as described.
b. No, I do not give my consent for my responses to be used anonymously for the study as 

described.

Please respond to the following statements and questions about the Influential Points application, 
making sure to read each carefully.
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2. I found the app easy to access.

a. Strongly Disagree
b. Disagree
c. Neutral
d. Agree
e. Strongly Agree

3. I found the app difficult to use.

a. Strongly Disagree
b. Disagree
c. Neutral
d. Agree
e. Strongly Agree

4. The app includes implementations of all of the methods I teach for determining whether or not a
point is a regression outlier, high leverage point, and/or influential point.

a. Strongly Disagree
b. Disagree
c. Neutral
d. Agree
e. Strongly Agree

5. I found dragging individual points in the scatterplot helpful for visualizing the potential impact 
of regression outliers, high leverage points, and influential points on a regression analysis.

a. Strongly Disagree
b. Disagree
c. Neutral
d. Agree
e. Strongly Agree

6. I plan on using the app when I teach regression outliers, high leverage points, and/or influential 
points.

a. Strongly Disagree
b. Disagree
c. Neutral
d. Agree
e. Strongly Agree

7. What did you find most useful about the app?
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[text response]
8. Are there any features that the app does not provide that you would find useful when you teach 

regression outliers, high leverage points, and/or influential points?

[text response]

9. Overall, what did you not like about the app?  Is there anything you think could be improved?  
Please explain briefly.

[text response]
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Abstract

We study the properties of billiards (mainly elliptical) as dynamical systems, in particular,
their integrability, and the existence and computation of periodic orbits. An implementation of
the involved computations in a free CAS (Maxima) is also presented, as a tool for visualization
and experimentation, which can be useful in web-based courses and distance learning.

1 Introduction
In a realistic setting, even the simplest question about the motion in a billiard can be difficult to solve.
For instance, starting with a ball at (x0, y0), kicked with initial velocity (vx, vy), we may ask: ’Will
the ball hit the table at the fixed but otherwise randomly chosen position (x, y) before 106 rebounds?’
In general, the answer will be ’No’, because there is a loss of energy when rolling and impacting on
the table, so after a few rebounds the ball will stop, probably without reaching the goal point. Thus,
we must assume that energy is conserved, so the motion of the ball continues indefinitely. Now the
problem is that the only way we can answer, is following the ball’s trajectory from the starting point,
maybe along a really large number of rebounds. It is not feasible to try to answer armed just with
pencil and paper, so we go for a computer and write a program to construct the trajectory given the
data (x0, y0) and (vx, vy), using Newton’s equations. We are then modeling the billiard as a dynamical
system. Here we face the following problem: The computer can store the intermediate values of the
position only up to a certain precision. This fact will influence the answer depending on whether
the system is chaotic or not. In the first case, sensitivity on initial conditions will render our answer
useless: Our prediction will depend on the precision used to describe the dynamics, and each rebound
will amplify the initial errors committed in determining positions. Therefore, we need to be sure
about the chaotic character of our billiard before we start to play.

It turns out that the chaotic character of a billiard depends on its shape. To be precise, rectangular
and elliptical billiards determine integrable dynamical systems, hence their dynamics are regular. But
other polygons or smooth boundaries, give rise to non-integrable, chaotic systems (indeed, there is
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a conjecture by Birkhoff [2] stating that among all the billiards whose shape is given by a smooth,
convex curve, only the elliptic case is integrable). We will explore what can be said about the motion
in this case, and what kind of questions about it make sense, trying to keep the mathematics (and
the physics) at a level as elementary as possible. In doing so, we will see that billiards provide an
excellent environment for blending Classical Mechanics, Mathematics (Calculus, Geometry) and the
use of Computer Algebra Systems (CAS). The possibility of numerically and visually experimenting
with a concrete physical system, makes this an interesting tool, well suited for distance learning and
self-study.

In this paper, we use the CAS Maxima (https://maxima.sourceforge.io), but every-
thing here can be easily adapted to any other CAS. Some general references for dynamical systems
are [1], [9], [12], for billiards see [7], [11], [13]. To save space, this paper does not include the source
code of all the functions used in the text, only the main functions are shown in Section 6 (full code is
available upon request).

2 Dynamical Systems and their integrability
For us, a dynamical system will be any physical system Σ that can be modeled using Newton’s
equations. A configuration will be any point in RN , where N ∈ N. A given system will not be able
to attain any arbitrary configuration. The allowed configurations fill up a submanifold Γ ⊂ RN called
the configuration space, and the dimension r = dim Γ is called the number of degrees of freedom of
the system.

The time evolution of Σ will be described by a smooth map x : I ⊂ R → Γ ⊂ RN , carrying t
to x(t), where I is an interval containing 0 ∈ R. Newton’s equation are then written as md2x

dt2
(t) =

F(x(t)), where F : Γ ⊂ RN → RN is the force field (notice that, unless otherwise explicitly stated, we
are going to consider only autonomous, velocity-independent forces). Defining the linear momentum
p = mdx/dt this is also equivalent to dp

dt
(t) = F(x(t)).

Example 1 Here N = 1 and Γ = R. We assume that the motion is determined by a potential V (x),
so x : I ⊂ R→ R satisfies Newton’s equation mẍ = −∇V (x) = −V ′(x) (In the sequel, we will use
points over a letter to denote derivatives with respect to time t). More precisely, for each t ∈ I ⊂ R
we have a configuration x(t) ∈ R, and the curve t 7→ x(t) satisfies the ordinary differential equation
mẍ = −V ′(x(t)). This is an example of one-dimensional motion. 4

We now introduce two important classes of systems: the conservative and the integrable ones.
They both have in common the existence of conserved quantities of the motion.

2.1 Conservative systems
Consider the case of a time-independent force which comes from a potential function V ∈ C∞(Γ).
Thus, we have

mẍ(t) = −∇V (x(t)) . (1)

These systems form a particular class, called conservative systems. The reason is that a certain func-
tion, called the energy, is conserved along their motion.
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To explain this fact, we need to introduce some more terminology. Recall that the allowed con-
figurations form the configuration space Γ ⊂ RN , now we are going to introduce a space contain-
ing configurations and momenta, the so called phase space. Generally speaking1 this space is just
M = Γ × RN ⊂ R2N (but see the footnote at the beginning of the next subsection). Each trajectory
on configuration space, x : I ⊂ R → Γ ⊂ RN , determines another curve on phase space, called its
lifting, denoted x̃ and acting as x̃(t) = (x(t),p(t)).

Remark 2 The points on phase spaceM ⊂ R2N are called the states of Σ. They can be identified with
the set of initial conditions for Newton’s equations; thus, each state uniquely determines the evolution
of the system (by the existence and uniqueness theorems for ordinary differential equations).

For a conservative system, there exists a function on phase space E : M → R such that its
composition with the lifting of the actual trajectory x(t) is a constant mapping. This function, called
the total energy of Σ, is defined as E(x,y) = 1

2
m 〈y,y〉 + V (x), where 〈·, ·〉 is the Euclidean scalar

product on RN , and V : Γ ⊂ RN → R is the potential.

Theorem 3 (Conservation of Energy) For any trajectory x : I ⊂ R→ Γ ⊂ RN (that is, a solution
of Newton’s equations (1)), we have d

dt
(E ◦ x̃)(t) = 0.

The proof is just a direct computation using the chain rule and equations (1).

Example 4 (One-dimensional motion) For any conservative system in one dimension, the trajectory
x : I ⊂ R → Γ ⊂ R must satisfy ε = E(x,mẋ) = 1

2
mẋ(t)2 + V (x(t)) for some constant ε ∈ R.

Then, we can solve for ẋ to obtain ẋ(t) =
√

2(ε− V (x))/m. Moreover, recalling the inverse function
theorem, applied to t = t(x), we get (in the region ε > V (x) bounded by the turning points, that is,

those configurations for which the velocity is zero, ẋ(t) = 0): dt
dx

= 1/
√

2
m

(ε− V (x)). Therefore, we
can compute t = t(x) by means of an integration:

t =

∫
dx√

2
m

(ε− V (x))
,

and once the relation t = t(x) is explicitly determined, we can invert it to get x = x(t) if needed. Thus,
we get the following important fact: for one-dimensional systems, the existence of one conserved
quantity (the energy) leads to the solution of the equations of motion by a quadrature (the computation
of an integral). We say that one-dimensional conservative systems are integrable. 4

2.2 Integrable systems
We have just seen that one-dimensional conservative systems are integrable. How about higher di-
mensional systems? To answer this question, think of the motion not taking place in configuration
space, but on phase space M . This is a 2r−dimensional space, where r is the number of degrees of
freedom2. If we have a set of n functions on phase space which are conserved quantities, f1, . . . , fn,

1That is, in absence of non-holonomic constraints.
2We have r = dim Γ and M defined as M = Γ × RN , but the factor RN can actually be replaced by Rr because

velocities must be tangent to Γ ⊂ RN .
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then the motion will occur on the intersection M(c1, . . . , cn) = M ∩ f−11 ({c1}) ∩ · · · ∩ f−1n ({cn}),
where c1, . . . , cn are some real constants.

The dimension of this intersection (as a submanifold of M ) is 2r−n. There are some possibilities
here. For instance, in the most favorable case in which n = 2r− 1, the dimension of this intersection
(as a submanifold of M ) will be exactly 1, that is, we will have the motion restricted to a curve
which must be the solution we are looking for. In Example 4, r = 1 = N , so the phase space was
2−dimensional. The existence of just one conserved quantity defined on phase space, the energy,
restricts the motion to the solution curve x(t). This kind of systems, with r degrees of freedom and
n = 2r − 1 independent conserved quantities defined on phase space (also called first integrals or
simply integrals of the motion)3, are called maximally superintegrable.

When the system Σ has r degrees of freedom and exactly n = r independent first integrals, we
say that it is integrable, and superintegrable if the number n of independent first integrals satisfies
r < n < 2r − 1.

Example 5 (Central forces) A force acting on a particle is called a central force if its supporting line
(the line along which it acts on bodies) passes through a fixed point O, which is then called the center
of the force. Thus, if we denote by r(t) the position of the particle at instant t ∈ I ⊂ R as measured
from O, so we get the curve in configuration space r(t) = Ox(t), we will have F(r(t)) = f(r(t))er,
with f : Γ ⊂ RN → R a smooth function and er the unit vector in the direction of Ox(t) (we omit
the time dependence to avoid overloading the notation).

When describing the motion under the action of a central force, the notion of angular momentum
is crucial. The angular momentum with respect to a point P ∈ RN of a particle of mass m, described
by the trajectory x(t), is defined as the function on phase space given by LP (x,y) = P x×P y. Thus,
if we consider the lifting of the curve x(t) to phase space, and evaluate the angular momentum on it,
writing LP (t) = LP (x(t),mẋ(t)) for the composition, we get LP (t) = mPx(t)×P ẋ(t). In the case
of central forces we obviously take P = O, yielding the more common expression L(t) = mr(t)×ṙ(t).

A straightforward computation shows that, when the force is central, L̇(t) = 0, that is: the an-
gular momentum is a first integral in any central-force system. Hence, central-force systems (with
r = 3 degrees of freedom) are superintegrable (as the three components of L are conserved indepen-
dently) 4. 4

The motion of integrable systems is regular and stable. Under very mild conditions, precisely
stated in the so-called Arnold-Liouville-Mineur (ALM) theorem, the trajectories on phase space are
bounded and either periodic or quasi-periodic. In any case, small deviations from the initial condi-
tions yield new trajectories remaining close to the original ones for some time (actually, two initially
close trajectories will diverge linearly in time [4]). This feature survives when projecting down to
configuration space: no chaos is possible in integrable systems.

More precisely, a geometric interpretation of the ALM theorem is this: When a system is inte-
grable, it admits a special class of coordinates, called action-angle coordinates; when the system is

3Some additional assumptions are needed in order to guarantee that these integrals are functionally independent, that
is, the intersections above effectively define a submanifold with reduced dimension, but we will not care about these
details here, and we will simply assume that all the required conditions are satisfied.

4In fact, these systems are maximally superintegrable, due to the existence of an additional first integral provided by
the Laplace-Runge-Lenz vector, which only has one independent component, giving a total of 5 = 2 · 3 − 1 integrals of
motion.
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expressed in terms of these, its phase space becomes foliated by tori. Each torus is labeled by a partic-
ular value of the action coordinate J (for r = 2), and on that torus, the motion is linear, parameterized
by the angle coordinate θ. Figure 1 (taken from [8]) illustrates the aspect that phase space adopts in a
typical integrable system.

Figure 1: Foliation of phase-space by tori

3 Billiards
There are some properties common to all billiards considered as dynamical systems. Fist of all, as
mentioned in the Introduction, we consider that the collisions of the ball on the boundary occur with-
out exchanging energy (elastic collisions), so we have a conserved quantity. Being a two-dimensional
system, every time there exists another first integral the billiard under consideration will be integrable.

The next observation is that the impact force acts along the normal to the boundary at the point of
impact, in absence of friction. This property alone, allows us to deduce many important consequences
that characterize the simplest cases of rectangular and circular billiards. One of them is the reflection
law.

Theorem 6 (Reflection law) In a billiard collision, the angle of reflection equals the angle of inci-
dence.

Example 7 (A rectangular billiard) In this case, the hypothesis of elastic collisions means that en-
ergy (equivalently, v2) is conserved, and the reflection law, taking into account the changes of ori-
entation occurring at the boundary, implies that the absolute value of the horizontal component of
velocity, |vx|, is conserved too (in fact, both |vx| and the vertical component |vy| are conserved). The
rectangular billiard is integrable, hence not chaotic. 4

3.1 Circular billiards. The Poncelet porism
The next case to consider is that of a circular billiard. Here, the forces along the normal of the bound-
ary always point radially, that is, they are directed toward the geometric center of the circumference:
We have a central force problem. Thus, aside from the energy we have another conserved quantity,
angular momentum L (recall Example 5). This system is also integrable, not chaotic.
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For circular billiards, some interesting phenomena begin to appear. Take a Cartesian coordinate
system centered at the geometric origin of the billiard O, and consider the ball departing from a point
z inside the billiard with a certain velocity, and reaching the boundary at point P. Some point x0

on the segment zP will be the orthogonal projection of the center O, that is, the line zP will be
tangent to the circle with center O and radius ‖x0‖. Also, if the ball incides on P forming an angle
θ0 with respect to the line containing OP, it will rebound with an angle −θ0 with respect to the same
line OP; thus, after running a distance ‖x0P‖ along the new direction, it will touch again the inner
circumference with center O and radius ‖x0‖, Sx0(O). This reasoning applies without changes after
each rebound, so the trajectory of the ball is such that each straight segment part of it, is tangent to the
circumference Sx0(O) (see Figure 2, where the trajectory starting from a point on the bisector line,
with coordinates (2r/9, 2r/9) and initial angle 0.469π, r being the radius of the circumpherence, is
shown after 50 rebounds).

Figure 2: Caustics in a circular billiard

Due to this property, that circumference is called the caustic of the trajectory (geometrically, it is
just the envelope).

Figure 3: Closed trajectories in a circular billiard Figure 4: Non-closed trajectories in a circular
billiard

The trajectory in Figure 2 is not closed. One could wonder whether there exists closed trajecto-
ries or not, so let us try with a different initial angle. Figure 3 shows the result of taking the same
initial point but with initial angle (with respect to the horizontal) π/2, after 50 iterations. The caus-
tic is drawn in blue. For a generic trajectory, though, we get a non-closed orbit; the first example
considered, that of an initial angle 0.469π, gives the graph in Figure 4 after 200 iterations.

Notice, however, that none of these trajectories is dense: the inner region bounded by the caustic
is never crossed. It turns out that there exists a close relation between caustics and closed orbits on
any billiard with perimeter determined by a conic, due to a classical result on Projective Geometry
discovered by J. V. Poncelet (1822).
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Theorem 8 (Poncelet porism) Consider two confocal conics Cinn and Cout. Take a point p0 on the
outer conic Cout and draw a line from it, tangent to the inner conic Cinn. Determine the point of
intersection of this line with the outer conic, and call it p1. Repeat this procedure with p1 as the
starting point, instead of p0, and consider the resulting trajectory. If it is closed after n rebounds,
then any other trajectory similarly constructed will be closed after n rebounds. In other words, given
that a single closed polygonal trajectory exists, all other trajectories sharing the same caustic will be
closed, with the same period.

There are many proofs of this theorem available. Perhaps the most accessible is the one in [6].
The reasoning given at the beginning of this subsection proves the theorem for the particular case of
concentric circles. In 3.2 we will present the proof of a weaker result valid when the outer conic is an
ellipse.

Remark 9 The existence of the caustic, and its forbidden interior, can be physically interpreted in
terms of the conservation of angular momentum. Recall that L = r × v. Hence, its norm is L =
rv sinα, where α is the angle between r and v. As L lies on the normal to the billard’s plane, its
direction is constant and so the fact that is conserved translates into the constancy of L as well. We
can write, then sinα = L/rv = C/r, with C > 0 constant. The trigonometric bound sinα ≤ 1
then yields r ≥ C. We have considered the degenerate case of a circular billiard (where the caustics
are also circles), but as we will see, Poncelet porism can also be physically interpreted in the elliptic
case.

3.2 Elliptic billiards
In this section all vectors will be considered three-dimensional. To this end, consider that the ellipse
describing the billiard lies on the z = 0 plane.

Continuing with more complicated shapes, we now analyze elliptic billiards. Suppose the bound-
ary is given by an ellipse of major semiaxis a, and minor semiaxis b. Let f = (

√
a2 − b2, 0, 0) be

the position of one of the foci, and −f that of the other. If r(t) denotes the position of the ball at the
instant t, define the focal distances (see Figure 3) r1(t) = r(t)− f and r2(t) = r(t) + f .

−f f

r

r2 r1

Figure 5: Ellipse geometry

The following result implies (because we already have a first integral, the energy) that an elliptic
billiard is an integrable system.
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Theorem 10 The function I = 〈L1,L2〉, where Li(t) = ri(t)× v(t) (for 1 ≤ i ≤ 2) and v(t) = ṙ(t)
is the velocity, is a first integral of the motion.

The proof is a long but straightforward computation, which is best done introducing elliptic co-
ordinates (ξ, η) in the plane of the ellipse, defined in terms of the Cartesian coordinates (x, y) as
x = f cosh ξ cos η, and y = f sinh ξ sin η.

The computation of the angular momenta L1, L2 from r1 = (x − f, y, 0), r2 = (x + f, y, 0) and
v, leads to that of

I = 〈L1,L2〉 = f 4(cosh2 ξ − cos2 η)(− sin2 η · ξ̇2 + sinh2 ξ · η̇2) . (2)

It is clear that this expression does not change under the transformation occuring at the point of
impact, (ξ̇, η̇) 7→ (−ξ̇, η̇), hence the theorem follows.

The next (purely geometric) result, taken from [11], tells us what the caustics of an elliptic billiard
are.

Theorem 11 A billiard trajectory inside an ellipse forever remains tangent to a fixed confocal conic.
More precisely, if a segment of a billiard trajectory does not intersect the segment F1F2, then all the
segments of this trajectory do not intersect F1F2 and are all tangent to the same ellipse with foci
F1 and F2; and if a segment of a trajectory intersects F1F2, then all the segments of this trajectory
intersect F1F2 and are all tangent to the same hyperbola with foci F1 and F2.

Proof. Let A0A1 and A1A2 be consecutive segments of a billiard trajectory, see Figure 6. Assume
that A0A1 does not intersect the segment F1F2 (the other case is dealt with similarly). It follows from
the reflection law (Theorem 6), that the angles made by segments F1A1 and F2A1 with the ellipse are
equal. Likewise, the segments A0A1 and A2A1 make equal angles with the ellipse. Hence the angles
∠A0A1F1 and ∠A2A1F2 are equal. Reflect F1 in A0A1 to point F ′1, and F2 in A1A2 to F ′2. Let B
be the intersection point of the lines F ′1F2 and A0A1, and C of the lines F ′2F1 and A1A2. Consider

B C

F ′1
F ′2

F1 F2

A1

A0
A2

Figure 6: Caustics in an elliptic billiard

the ellipse E1 with foci F1 and F2 that is tangent to the line A0A1. Since the angles ∠F2BA1 and
∠F ′1BA0 are equal, and so are the angles ∠F ′1BA0 and ∠F1BA0, the angles ∠F2BA1 and ∠F1BA0

are equal. Again by the reflection law, the ellipse E1 touchesA0A1 at the pointB. Likewise the ellipse
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E2 with foci F1 and F2 touches A1A2 at the point C. We want to show that these two ellipses coincide
or, equivalently, that |F1B|+|BF2| = |F1C|+|CF2|, which is reduced to |F ′1F2| = |F1F ′2|. Notice that
the triangles4F ′1A1F2 and4F1A1F

′
2 are congruent. Indeed, |F ′1A1| = |F1A1| and |F2A1| = F ′2A1|

by symmetry. In addition, the angles ∠F ′1A1F2 and ∠F1A1F
′
2 are equal: the angles ∠A0A1F1 and

∠A2A1F2 are equal, hence so are the angles ∠F ′1A1F1 and ∠F ′2A1F2, and adding the common angle
∠F1A1F2 implies that ∠F ′1A1F2 = ∠F1A1F

′
2. Equality of the triangles 4F ′1A1F2 and 4F1A1F

′
2

implies that |F ′1F2| = F1F ′2|, which had to be proven.
As an immediate consequence of this theorem, we have for elliptic billiards the same relation

between caustics and closed orbits that we found in the circular case, namely: Given that a single
closed polygonal trajectory exists, all other trajectories sharing the same caustic will be closed, with
the same period.

There is also an interpretation of Theorem 11 in terms of integrals of motion. Let our elliptic table
be given by its semiaxes a, b. The constant-coordinates grid defined by the elliptic coordinates can be
described by the one-parameter set of confocal conics

x2

a2 + λ
+

y2

b2 + λ
= 1 (3)

where the original ellipse corresponds to λ = 0, for values λ ∈ ]−b2,+∞[ we get a family of ellipses
sharing their foci, and for λ ∈ ]− a2, b2[ we have a family of confocal hyperbolae orthogonal to that
of the ellipses.

Suppose now that the initial segment of a trajectory is tangent to one of these constant-coordinate
curves. Can we tell which one is going to be? If the segment is described by the equation y = mx+c,
the tangency condition means that there exists a point (x0, y0) belonging to both curves, the line
y = mx+ c and a certain member of the family (3), yielding the system

x20
a2 + λ

+
y20

b2 + λ
= 1

y0 = mx0 + c .

After some algebraic manipulations, we get (m2 + 1)λ = c2 − b2 − m2a2. Thus, the value of λ
determining the tangent confocal conic is

λ =
c2 − (m2a2 + b2)

1 +m2
. (4)

Notice that, because of Theorem 11, all the subsequent segments of the trajectory are tangent to the
same conic, and the preceding reasoning applies to any of them. In other words, λ is a first integral of
motion.

Thus, we have two known integrals, I = 〈L1,L2〉 and a new one λ. They are not independent,
though (again, the proof is a long but straightforward computation).

Proposition 12 The integrals I and λ are related by

λ = I − b2 .
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4 Periodic orbits
In this section, following Sieber [10], we determine the conditions that a trajectory on an elliptic
billiard must satisfy in order to be periodic (notice how this approach is different to the one used in
previous works [3, 5] where periodic orbits are found by numerical brute force and trial and error,
following a trajectory until it passes again through the intial point, within a certain tolerance). For
notational reasons, we will introduce a rescaling of the invariant I = 〈L1,L2〉 by the energy (which
is also an invariant):

α =
I

4E
. (5)

Our main tool to determine periodic orbits is the Arnold-Liouville-Mineur theorem, and this re-
quires computing the action coordinates of the elliptic billiard. As these are given by integrals of
the momenta, and they turn out to be related to the first integrals of the system, it will be convenient
to write the momenta in terms of the integrals E,α (we could as well take E, I = L1L2, but the
expressions in terms of E,α are cleaner, as we will see). Some long and boring computations lead to

p2η = E(f 2 sin2 η + α) , (6)

and
p2ξ = E(f 2 sinh2 ξ − α) . (7)

Now we are ready to build the action integrals. These are

Iξ =
1

2π

∮
pξ dξ =

√
E

π

∫ ξ1

ξ0

√
f 2 sinh2 ξ − α dξ (8)

Iη =
1

2π

∮
pη dη =

2
√
E

π

∫ η1

η0

√
f 2 sin2 η + α dη , (9)

where the limits of integration are given by

• For α > 0, ξ0 = asinh

√
|α|
f
, ξ1 = asinh b

f
, η0 = 0, η1 = π

2
.

• For α < 0, ξ0 = 0, ξ1 = asinh b
f
, η0 = arcsin

√
|α|
f
, η1 = π

2
.

Not surprisingly at all, the integrals in (8) and (9) can be solved in terms of elliptic functions:

Iξ =



√
E

π

[
a

b

√
b2 − α− f

κ
E

(
arcsin

√
b2 − α
b2

, κ

)]
√
E

π

[
ab√
b2 − α

− α

f
F

(
arcsin

√
b2

b2 − α
,

1

κ

)
− fE

(
arcsin

√
b2

b2 − α
,

1

κ

)]
,

(for α > 0 and α < 0, respectively) and

Iη =


2
√
E

π

f

κ
E (κ) , for α > 0

2
√
E

π

[
α

f
K

(
1

κ

)
+ fE

(
1

κ

)]
, for α < 0 .
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where the modulus is
κ =

f√
f 2 + α

,

and F,E denote, respectively, the elliptic incomplete integrals of the first and second kind, while K
is the complete elliptic integral of the first kind.

The periodic orbits live on the tori given by the Arnold-Liouville-Mineur theorem, and in order
to be closed trajectories on these tori, the quotient of the angular frequencies wξ, wη must be rational.
Thus, we have the condition that, for some m,n ∈ N,

wξ
wη

=

∂E
∂Iξ

∣∣∣
Iη

∂E
∂Iη

∣∣∣
Iξ

= − ∂Iη
∂iξ

∣∣∣∣
E

= −
∂iη
∂α

∣∣∣
E

∂Iξ
∂α

∣∣∣
E

=
n

m
, (10)

where, by the properties of elliptic integrals,

∂Iξ
∂α

∣∣∣∣
E

=


−
√
Eκ

2πf
F

(
arcsin

√
b2 − α
b2

, κ

)
, for α > 0

−
√
E

2πf
F

(
arcsin

√
b2

b2 − α
,

1

κ

)
, for α < 0 ,

and

∂Iη
∂α

∣∣∣∣
E

=


√
Eκ

πf
K(κ) , for α > 0

√
E

2πf
K
(
1
κ

)
, for α < 0 .

Two possibilities that can appear, depending on the sign of the invariant α. For instance, when
α > 0 (the case α < 0 can be similarly analyzed) the condition for periodic orbits (10) reads

F

(
arcsin

√
b2 − α
b2

, κ

)
=

2m

n
K(κ) ,

or, by applying elliptic inverses, √
b2 − α
b2

= sn

(
2m

n
K(κ)

)
, (11)

which has a solution for all n ∈ N, n ≥ 3, and 1 ≤ m < n/2. The integers n,m have the interpreta-
tion of number of rebounds of the orbit and its rotation number5, respectively.

The values of κ (hence, α) that satisfies (11) must be determined numerically but, fortunately,
there exist very fast and stable algorithms for dealing with elliptic functions.

5Roughly, how many times the trajectory makes a whole loop around.
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4.1 Practical computations
Let us see how the knowledge of the first integral α (as numerically computed in (11)) determines
the slope of the first segment of a closed orbit. We will make use of the invariant λ, which appeared
in subsection 3.2. There, we saw that λ parameterizes a family of confocal ellipses in such a way
that λ = 0 corresponds to the boundary ellipse of the billiard, and we could determine the value of
λ corresponding to the confocal ellipse to which the first segment of a trajectory is tangent. If that
segment belongs to the line y = mx+ c, we found in (4) that

λ =
c2 − (m2a2 + b2)

1 +m2
.

Suppose now we want to compute a closed n−orbit starting at a point (x0, y0) on the border of
the billiard. Let y = mx+ c be the line containing its initial segment. As it starts at (x0, y0), we must
have y0 = mx0 + c, or c = y0 −mx0. Substituting in the expression for λ above, we get a relation
between the slope m and λ: λ = ((y0 −mx0)2 − (m2a2 + b2))/(1 + m2). Moreover, in Proposition
12 we found a relation between λ and the invariant I . Let us make the assumption that E = 1/4, for
simplicity6. In this case, we have α = I , and also λ = α − b2. By considering these expressions for
λ together, we get a system of equations which leads to

α =
(y0 −mx0)2 −m2(a2 − b2)

1 +m2
.

This is the expression used in the Maxima code, but we can turn it into an explicit relation between
m and α: First, write (1+m2)α = (y0−mx0)2−m2(a2−b2), then factor terms containing powers of
m, (α+x20+a

2−b2)m2+2x0y0m−y20 = 0, and finally getm =
(
x0y0 ±

√
α + a2 − b2 + 2x0y0

)
/(α+

a2 − b2 + x20).
Although the computations can be made simbollically, for large orbits this would cause a buffer

overflow, hence the code converts everything to bfloats, thus introducing small rounding errors that,
if so desired, can be avoided substituting the bfloat commands by radcan ones.

5 Simulations in a CAS

5.1 Elliptic billiards
The command elliptic_billiard(a,b,xinit,yinit,phi0,N) simulates the behavior
of an elliptic billiard table, where a,b are the major and minor semiaxes of the bounding ellipse,
xinit,yinit are the coordinates of the initial point (it can lay in the interior of the ellipse), phi0
is the initial angle (measured counterclockwise in radians with respect to the horizontal), and the
positive integer N is the number of rebounds.

Let us see some examples of their use:

(%i1) elliptic_billiard(4,3,2.5,1.13,0.7*%pi,50);

6That just means that we will be selecting a particular n−orbit among the many possible.
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The same initial point but with a different initial slope:

(%i2) elliptic_billiard(4,3,2.5,1.13,%pi/3,50);

Here we see the degenerate case of a circular billiard:

(%i3) elliptic_billiard(2,2,4/9,4/9,0.469*%pi,50);
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An animation of this last example can be produced with the previous command suitably modified:

(%i4) elliptic_billiard_animated(2,2,4/9,4/9,0.469*%pi,50);

For the sake of completeness, let us comment on some of the computations required in the function
elliptic billiard (see Section 6). First, assume that we already know a point of impact with
the boundary, (xn, yn), and the velocity after the rebound, (un, vn), so we want to determine the next
point of impact (xn+1, vn+1). The parametric equations of the line r(t) joining these two points are
r1(t) = xn + tun and r2(t) = yn + tvn. This line meets the ellipse at two points, determined by the
condition r21/a

2 + r22/b
2 = (xn + tun)2/a2 + (yn + tvn)2/b2 = 1. Developing this expression and

taking into account that (xn, yn) lies on the ellipse (so x2n + y2n = 1) we get(
2xnun + tu2n

a2
+

2tynvn + tv2n
b2

)
t = 0 ,

which has two solutions: t = 0 (corresponding to (xn, yn)), and the one of interest for us: t =
−2(xnunb

2 + ynvna
2)/(b2u2n + a2v2n). By substituting in the equations above, we find the coordinates

of the point of intersection: 
xn+1 = xn − 2

xnunb
2 + ynvna

2

b2u2n + a2v2n
un

yn+1 = yn − 2
xnunb

2 + ynvna
2

b2u2n + a2v2n
vn .

Next, we need to compute the velocity vector after the impact, (un+1, vn+1). This vector is the
reflection of the incoming velocity (un, vn) across the normal line of the ellipse at (xn+1, yn+1). The
inward normal7 (N1, N2) is easily found:

(N1, N2) =−
(
2xn
a2
, 2yn
b2

)
‖
(
2xn
a2
, 2yn
b2

)
‖

=
−1√

b4x2n+1 + a4y2n+1

(b2xn+1, a
2yn+1) .

7We need to take the inward normal, so the ball bounces into the ellipse.
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The reflection of (un, yn) across the line determined by (xn+1, yn+1) and (N1, N2) is given by
(un+1, vn+1) = (un, vn)− 2 〈(un, vn), (N1, N2)〉 (N1, N2) , which leads to the expressions used in the
code (compare with [3]):

un+1 = un −
2(b2xn+1un + a2yn+1vn)

b4x2n+1 + a4y2n+1

b2xn+1

vn+1 = vn −
2(b2xn+1un + a2yn+1vn)

b4x2n+1 + a4y2n+1

a2yn+1 .

The preceding reasonings can not be applied to the first segment of the orbit, as (x0, y0) does not
necessarily lie on the ellipse8. Thus, we start with the initial point (x0, y0) and the initial velocity,
which is the unitary vector (u0, v0) along the direction given by the slope m0 = tanφ0, that is,
(u0, v0) = (1, tanφ0) /

√
1 + tan2 φ0 (the particular cases φ0 = π/2 and φ0 = 3π/2, for which

(u0, v0) are (0, 1) and (0,−1), respectively, are treated separatedly).
We want an explicit formula for (x1, y1) depending on these data alone. The initial segment of

the orbit is the line y = m0x + c0, so c0 = y0 −m0x0. Substitution into the ellipse’s equation yields
(x/a)2 + ((m0x+ c0)/b)

2 = 1 , so the x coordinate of the new point must satisfy (b2 + a2m2
0)x

2 +
2a2m0c0x+a2(c20−b2) = 0 , a quadratic equation with two solutions, depending only on (a, b,m0, c0).
Let us label them x+ ≥ x−. A geometric interpretation of y = m0x + c0 and the relative positions
of (x0, y0), (x1, y1), makes clear that we must choose x+ when u0 > 0 (so the line y = mx0 + c0 is
traveled left to right and the abcissa x1 is to the right of x0), and choose x− when u0 < 0 (so the line
y = mx0 + c0 is traveled right to left and the abcissa x1 is to the left of x0).

5.2 Periodic orbits
5.2.1 Case I > 0 (elliptic caustic)

The function is norbits elliptic(a,b,x0,N,m). Its syntax should be clear, the only caveat
is that N represents the number of points in the orbit (number of bounces or rebounds), while m
represents the rotation number (roughly speaking, how many times the closed orbit winds around),
which must satisfy the restriction m < N/2. As the starting point is taken on the ellipse, only
the initial coordinate xinit is needed (the corresponding yinit is determined from the ellipse
equation). Here are some examples, starting with a 4−orbit on an ellipse of semiaxes a = 4, b = 3,
and rotation number N = 1 (the initial point is taken at x0 = 1.3):

(%i5) norbits_elliptic(4,3,1.3,4,1);

8In the formulae for (un+1, vn+1) we use the expressions for (xn+1, yn+1), which were obtained under the assumption
that (xn, yn) was on the ellipse.
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(%i6) norbits_elliptic(4,3,2.25,11,3);

(%i7) norbits_elliptic(4,3,1.3,35,6);

The Research Journal of Mathematics and Technology, Volume 14, Number 1 

Page 46 of 133



5.2.2 Case I < 0 (hyperbolic caustic)

The command and syntax are completely analogous to the previous one. It will suffice to give an
example of its use:

(%i8) norbits_hyperbolic(5,3,1.28,4,1);

As a particular feature of this case, there are some conditions that must be satisfied in order to get
an orbit. If that does not occur, a message will be issued.

(%i9) norbits_hyperbolic(4,3,1.28,6,1);
(%o9) With these parameters, the motion takes place on a complex
torus. Please, select them so the condition b/a<sin(m*%pi/N) is
satisfied

5.3 Poincaré sections
It is also possible to analyze Poincaré sections nof elliptic billiards, which are the basic tool to study
the onset of chaos in a dynamical system [9],[12]. This is done by the function below, whose argu-
ments are the semiaxes a, b, a list of initial conditions of the form [[θ0, φ0], . . . , [θk, φk]] (such that
the initial point on the ellipse is (x0, y0) = (a cos θ0, b sin θ0) and the slope of the initial trajectory is
m0 = tanφ0), and the number of iterations N . As an example, with the following command we com-
pute the Poincaré section of an elliptic billiard of semi-axes a = 4, b = 3, following the trajectories of
11 points given by initial conditions of the form [θj, φj] = [π/3,−π + 2πj/10], along 100 rebounds:

(%i10) eb_poincare(4,3,makelist([%pi/3,-%pi+2*j*%pi/10],j,0,10),100);
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Notice how these Poincaré sections are, basically, deformations of that of a harmonic oscillator,
reflecting the integrability of elliptic billiards.

6 Code example
As an example of the practical implementation of the ideas exposed in the paper, here is the code of
the Maxima function elliptic_billiard and the auxilliary norbits_elliptic_angle
used to simulate the behavior of an elliptic billiard table. The syntax is

elliptic_billiard(a,b,xinit,yinit,phi0,N)

where a,b are the major and minor semiaxes of the bounding ellipse, xinit,yinit are the coor-
dinates of the initial point (it can lay in the interior of the ellipse), phi0 is the initial angle (measured
counterclockwise in radians with respect to the horizontal), and the positive integer N is the number
of rebounds.

(%i1) norbits_elliptic_angle(a,b,N,m):=block(
[foc:sqrt(aˆ2-bˆ2),eeqqnn,xx],
if is(m>=N/2) then

return("The rotation number must satisfy m<N/2"),
eeqqnn:bfloat(sqrt(bˆ2-xx)/(b)-jacobi_sn((2*m/N)*elliptic_kc(focˆ2/(focˆ2+xx)),focˆ2/(focˆ2+xx))),
bf_find_root(eeqqnn,xx,0.001,bˆ2)
)$
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(%i2) elliptic_billiard(a,b,xinit,yinit,phi0,N):=
block(
[ratprint:false,solns,xp,xm,segments],
local(x,y,u,v,m,c),
if is(a<b) then

return("The semiaxes must satisfy b<a"),
if (is(not(integerp(N))) or is(N<1)) then

return("The number of rebounds must be a positive integer"),
if is(bfloat((xinit/a)ˆ2+(yinit/b)ˆ2-1)>0) then

return("The initial point does not lie on the ellipse or its interior"),
if (is(phi0=%pi/2) or is(phi0=0.5*%pi))

then (x[0]:bfloat(xinit),y[0]:bfloat(yinit),
x[1]:x[0],y[1]:b*sqrt(1-(x[1]/a)ˆ2),u[0]:0,v[0]:1)

elseif (is(phi0=3*%pi/2) or is(phi0=1.5*%pi))
then (x[0]:bfloat(xinit),y[0]:bfloat(yinit),
x[1]:x[0],y[1]:-b*sqrt(1-(x[1]/a)ˆ2),u[0]:0,v[0]:-1)

else (
m[0]:bfloat(tan(phi0)),
x[0]:bfloat(xinit),
y[0]:bfloat(yinit),
u[0]:1/sqrt(1+(m[0])ˆ2),
v[0]:m[0]/sqrt(1+(m[0])ˆ2),
c[0]:y[0]-m[0]*x[0],
solns:bfloat(map(’rhs,solve(
(bˆ2+aˆ2*(m[0])ˆ2)*xˆ2+2*aˆ2*m[0]*c[0]*x+aˆ2*((c[0])ˆ2-bˆ2),x))),
xp:lmax(solns),
xm:lmin(solns),
if is(u[0]<0) then x[1]:xm
elseif is(u[0]>0) then x[1]:xp,
y[1]:m[0]*x[1]+c[0]

),
u[1]:u[0]-2*(bˆ2*x[1]*u[0]+aˆ2*y[1]*v[0])*bˆ2*x[1]/(bˆ4*(x[1])ˆ2+aˆ4*(y[1])ˆ2),
v[1]:v[0]-2*(bˆ2*x[1]*u[0]+aˆ2*y[1]*v[0])*aˆ2*y[1]/(bˆ4*(x[1])ˆ2+aˆ4*(y[1])ˆ2),
for j:1 thru N do (
x[j+1]:x[j]-2*(x[j]*u[j]*bˆ2+y[j]*v[j]*aˆ2)*u[j]/(bˆ2*(u[j])ˆ2+aˆ2*(v[j])ˆ2),
y[j+1]:y[j]-2*(x[j]*u[j]*bˆ2+y[j]*v[j]*aˆ2)*v[j]/(bˆ2*(u[j])ˆ2+aˆ2*(v[j])ˆ2),
u[j+1]:u[j]
-2*(bˆ2*x[j+1]*u[j]+aˆ2*y[j+1]*v[j])*bˆ2*x[j+1]/(bˆ4*(x[j+1])ˆ2+aˆ4*(y[j+1])ˆ2),
v[j+1]:v[j]
-2*(bˆ2*x[j+1]*u[j]+aˆ2*y[j+1]*v[j])*aˆ2*y[j+1]/(bˆ4*(x[j+1])ˆ2+aˆ4*(y[j+1])ˆ2)
),
segments:makelist([x[j],y[j]],j,0,N),
wxdraw2d(proportional_axes=xy,
color=red,line_width=2,nticks=75,
parametric(a*cos(t),b*sin(t),t,0,2*%pi),
color=orange,line_width=1,
points_joined=true,
point_type=filled_circle,
points(segments))
)$
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Abstract

Hyperbolism of a given curve with respect to a point and a line is an interesting construct,
a special kind of geometric locus, not frequent in the literature. While networking between two
different kinds of mathematical software, we explore various cases, involving quartics, among
them the so-called Külp quartic and topologically equivalent curves, and also an example with a
sextic and a curve of degree 12. By a similar but different way, we derive a new construction of
a lemniscate of Gerono. First, parametric equations are derived for the curve, then we perform
implicitization Gröbner bases packages and using elimination. The polynomial equation which is
obtained enables to check irreducibility of the constructed curve.

1 Introduction

1.1 The needed dialog between two kinds of mathematical software
Prior to the development of Computer Algebra Systems (CAS) and Dynamic Geometry Software
(DGS), mechanical devices were used to draw specific curves [29]; spirographs were among the most
popular and enabled to draw epitrochoids and hypotrochoids1 and other related curves. Here, instead
of mechanical devices, we use software, both a DGS (GeoGebra, version 5.2.871.0-d, released on
December 10th, 2024) and a CAS (Maple 2024). The first one enables to construct and explore the
curves, their shape and topology, sometimes providing polynomial equations but not always. We use
then the CAS in order to perform algebraic computations and derive polynomial equations for the
curves under study. Afterwards it is possible to copy-paste the formulas to the DGS and to analyze
the curves with its dynamical features. This CAS-DGS collaboration provides a useful environment
for the exploration of new constructs, as in [15]. Such a dialog between the two kinds of software has
been used for example in [12, 9], and for years has been wished to be more automatic [25].

1See https://mathcurve.com/courbes2d.gb/epitrochoid/epitrochoid.shtml and https:
//mathcurve.com/courbes2d.gb/hypotrochoid/hypotrochoid.shtml.
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In this work, the curve are determined first by parametric equations. Implicitization is important,
as a polynomial presentation may provide information whether the curve is irreducible or not (see
[21], chap. 1). The algebraic part of the work is based on the theory of Gröbner bases and on
Elimination; see [7, 28]. We may refer also to [2], in particular for the non familiar reader who can
see how to work out elementary examples by running the algorithms ”by hand”. Note that Maple
has an implicitize routine in its package algcurves, based on [6]. Irreducibility is also checked with
automated methods; see Section 2.

Mathematical objects cannot be grasped with hands, and are approached using numerous registers
of representations [17]; the classical registers for plane curves are graphical, numerical and algebraic.
Parametric representations and implicit representations as two subregisters of the algebraic one. The
study is made rich and efficient by switching between registers, but switching from parametric to
implicit and from implicit to parametric are non trivial tasks; see [22, 27, 28, 7]. In some cases, the
switch is impossible.

Switching between different representations of plane curves is an important issue, with numerous
applications in computer aided design and other fields. In [30], Wang emphasizes the role in computer
aided geometric design and modeling. He develops ”an extremely simple method that converts the
rational parametric equations for any curve or surface into an implicit equation” (we recommend
also the vast bibliography there in the paper). He uses Gröbner bases, resultants, etc. In our work
here, we transform the obtained parametric equations into parametric rational presentations, then into
polynomial equations. We use Maple’s PolynomialIdeals package and elimination to derive implicit
equations. It is often easier to analyze the topology of a curve using an implicit presentation than a
parametric presentation. Anyway, both enable the study and classification of singular points.

1.2 Plane curves defined as geometric loci
Plane algebraic curves are a classical topic, to which numerous books have been devoted, such as [32].
Websites are devoted to curves (and surfaces) such as Mathcurve (http://mathcurve.com).
Full catalogues of curves of degree 2,3 and 4 exist, and partial catalogues for degree 6. Some of them
are constructed as geometric loci. The bifocal definition of ellipses and hyperbolas is generally the
first example met by students. Cassini ovals (also called spiric curves) and Cayley ovals are more
advanced examples. Recently, some octic curves (curves defined by polynomials of degree 8) have
been described as geometric loci in relation with a classical theorem of plane geometry, namely Thales
second theorem [13]. The present paper shows a bunch of curves, more or less classical, appearing as
geometric loci by construction of hyperbolisms.

Our concern is the construction and study of plane curves as hyperbolism of classical curves,
according to the definition in the Mathcurve website [20]:

Definition 1 The hyperbolism of a curve Γ0 with respect to a point O and a line (D) is the curve Γ,
locus of the point M defined as follows: given a point M0 on Γ0, the line (OM0) cuts (D) at P ; M is
the projection of P on the line parallel to (D) passing by M0.

Remark 2 Analytically, if the line (D) is given by the equation x = a, the transformation of Γ0 into
Γ can be written (x, y) →

(
x, a y

x

)
; it is quadratic, so an algebraic curve of degree n is transformed

into an algebraic curve of degree at most 2n. The 2nd coordinate a y
x

makes the connection with
hyperbolas, whence their name hyperbolism.
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By definition, hyperbolisms of curves are a subtopic of geometric loci, which are a classical topic,
from middle school to university. The last decades have seen numerous works devoted to automated
methods in Geometry, such as [1, 3, 4, 18] and [23], where loci are one of the main topics for which
automated methods have been developed, and implemented in GeoGebra-Discovery2. A large num-
ber of versions of automated commands exist, we use here only a few of them, mostly GeoGebra’s
Locus(<Point Creating Locus>,<Point>) and Locus(<Point Creating Locus>,<Point>). The
place holders are called respectively the Tracer and the Mover in the above mentioned papers. The
automated command provides a plot of the curve, sometimes also an implicit equation. For this it uses
numerical methods. In the companion package GeoGebra-Discovery, this has been supplemented by
symbolic algorithms yielding more precise answers. For the algebraic work, we switched to the Maple
software, especially for implicitization, but not only.

The notion of a hyperbolism has been presented to a small group of in-service mathematics teach-
ers, learning towards an advanced degree M.Ed. (Master of Education). These teachers had previous
knowledge including the perpendicular bisector of a segment, a circle, conics, etc. as geometric loci,
but almost neither CAS nor DGS literacy. The outcome of their work was double: the development of
new perspectives in geometry and acquisition of technological skills. The feedback was very positive,
and true curiosity at work.

2 First easy examples

2.1 Hyperbolism of a circle centered at the point O and the line is tangent to
the circle

We consider the circle C centered at the origin O with radius r. The line D has equation x = r and is
thus tangent to the circle C. A point M0 ∈ C is given by (x, y) = (r cos t, r sin t) where t ∈ [0, 2π].
The line OM0 has thus equation y = x tan t and intersects the line D at P (r, r tan t). It follows that
the point M has coordinates

(x, y) = (r cos t, r tan t) (1)

Equation (1) is a parametric presentation of the geometric locus that we are looking for. Figure
1 shows a screenshot of a GeoGebra session for this question. The requested curve has been ob-
tained using the LocusEquation(M,M0) command. It could have been obtained also with the
LocusEquation(<Point Creating Locus Line >,< Slider >), after entering directly the parametriza-
tion (1), but in this case the new construct is independent of what has been done previously. The plots
corresponding to the 2 last rows in the algebraic window overlap each other, therefore only one plot
is viewed. Nevertheless, they are considered by the software as 2 different objects.

In this session, the radius may be changed, but the equation of the geometric locus remains of the
same form. In Figure 1, r = 4 and the geometric locus has equation

x2y2 + 16x2 = 256, (2)
2A freely downloadable companion to GeoGebra, available from https://github.com/kovzol/

geogebra-discovery. We used the November 5th, 2024 version; a new version has been released on December
21st, 2024.
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Figure 1: Hyperbolism of a circle with respect to its center and a tangent

which is the equation of a Külp quartic3. A GeoGebra session4 may help to visualize the construct for
various values of the radius. Slightly different ways to construct the hyperbolism with the software
may be chosen, and for some of them an implicit equation is not obtained. The user has to modify
his protocol to have it ”more geometric” (v.i. Section 4). It happens that GeoGebra-Discovery dis-
plays a message telling that the construction involves steps which are not supported by the command
LocusEquation, which gives an indication that the construction has to be more geometric (e.g. not
dependent on a slider). In our applet, the tangent has not been constructed directly with its equa-
tion, as in Figure 1, but using the Tangent command of the software, which is important as part of a
geometric construct; see Figure 2.

In order to derive from Equation (1) a polynomial equation, we use the following substitution, as
in [12]:

∀t ∈ R, ∃u ∈ R such that

{
cos t = 1−u2

1+u2

sin t = 2u
1+u2

(3)

We apply the following Maple code:

xk := r*cos(t); yk := r*sin(t)/cos(t);
xkrat := subs(cos(t) = (-uˆ2 + 1)/(uˆ2 + 1), xk);
ykrat := subs(cos(t) = (-uˆ2 + 1)/(uˆ2 + 1),

subs(sin(t) = 2*u/(uˆ2 + 1), yk));
p1 := x*denom(xkrat) - numer(xkrat);
p2 := y*denom(ykrat) - numer(ykrat);
J := <p1, p2>;
JE := EliminationIdeal(J, {r, x, y});

3A curve studied in 1878 by Külp; see https://mathcurve.com/courbes2d/kulp/kulp.shtml
4https://www.geogebra.org/m/md4f8aaa
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Figure 2: Hyperbolism of a circle with respect to its center and a tangent - variable radius

The output is an ideal with a unique generator, providing the following equation (for any real r):

r2x2 + x2y2 − r4 = 0. (4)

Note the dependence of the coefficients in Equation (4) on the radius of the circle. Using Maple’s com-
mand evala(AFactor(...), we check that the left hand side in Equation (4) is an irreducible polynomial.
This means that the 2 components of the curve described by this equation cannot be distinguished by
algebraic means, i.e. they are not 2 distinct components of the curve (see [21], p.17-18).

2.2 Hyperbolism of an ellipse
We generalize slightly the situation of subsection 2.1 and consider now an ellipse C whose equation
is x2

a2
+ y2

b2
= 1, where a and b are positive parameters5. Here too, the point O is the origin. The line

D has equation x = a, i.e. is tangent to the ellipse C and parallel to the y−axis. A point M0 ∈ C is
given by (x, y) = (a cos t, b sin t) where t ∈ [0, 2π]. The line OM0 has thus equation y = x b

a
tan t

and intersects the line D at P (a, b tan t). It follows that the point M has coordinates

(x, y) = (a cos t, b tan t) (5)

Remark 3 The segment c in the upper left corner of Figure 3 comes instead of a slider for a parameter
which is involved in the implicit equation of the ellipse. This, in order to have the ellipse dependent on
a geometric construct. Actually, the ellipse itself could have been constructed as a geometric loci, but
in such a case GeoGebra’s command LocusEquation may provide a plot and an implicit equation,
but not the possibility to use the command Point on Object.

5GeoGebra applets are available at https://www.geogebra.org/m/eqywkwcw and https://www.
geogebra.org/m/tfnrwaqh
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Figure 3: Hyperbolism of an ellipse

We apply a Maple code similar to the code in the previous subsection6. The output provides an
equation for the hyperbolism of the ellipse:

b2x2 + x2y2 − a2b2 = 0. (6)

Using the same tool as in previous section, we show that the obtained curve is irreducible. Note that
it is not a Külp quartic (the coefficient of x2 is not the square of the free coefficient). The equations
are quite similar, but not identical. Figure 4 shows how a GeoGebra applet may help to understand
that, for various values of the axes of the ellipse, the obtained curves have the same topology. The
exploration leads to proving that two curves in this family are obtained from each other by an affinity
whose axis is the y−axis and the direction is perpendicular to it. Moreover, this may be an opportunity
to explore in class the similarities and the differences of these quartics, Külp quartic, and also the
Witch of Agnesi (which is a cubic).

Remark 4 Denote F (x, y) = b2x2 + x2y2 − a2b2. We have: Fx(x, y) = 2x(b2 + y) and Fy(x, y) =
2x2y. It is easy to show that the system of equations Fx = Fy = 0 has no solution (actually (0, 0)
solves the system, but the origin does not belongs to the curve). Therefore the curve has no singular
point.

Remark 5 Assuming that at inflexion points the curvature is equal to 0, it is possible to look for
candidates using the following code:

with(Student[VectorCalculus]);
Curvature(<a*cos(t), b*tan(t), t>, t);
simplify(%);
infl := solve(% = 0, t);
allvalues(infl[1]);

6Maple’s implicitize command did not always provide an answer.
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Figure 4: Showing that all the curves have the same topology

Different issues may appear. First the meanings of < ..., ... > in the two packages PolynomialIdeals
and VectorCalculus are different, therefore we suggest to introduce the 2nd one only after the first one
has been used. Second, the answer for general parameters a and b may be heavy; it may be wiser to
use them with specific values. Finally, this provides values of the parameter t which can correspond
to points of inflexion, but not only. More verifications are needed.

Remark 6 The given ellipse is the image of the circle whose equation is x2 + y2 = a2 by the affine
transformation (x, y) 7−→

(
x, b

a
y
)
. It is easily proven that the quartic obtained here is the image by

the same transformation of the Külp quartic found in the previous subsection.

3 Hyperbolism of a circle with respect to a line secant to the circle

3.1 The circle is centered at the origin
Other quartics can be obtained as hyperbolisms of circles. We consider a circle C centered at the
origin with radius r and the line D with equation x = b, where b ̸= r. Figure 5 is a screenshot of
a GeoGebra applet7); the line D is a secant to the circle C. We perform the same construction as
in subsection 2.1, and obtain a plot of the geometric locus, but cannot obtain an implicit equation
with the command LocusEquation. Therefore, we need to make the algebraic computation using
the CAS. Note that, even when changing the value of r by changing the length of the corresponding
segment AB, the implicit equation is not obtained.

f := -rˆ2 + xˆ2 + yˆ2;

7https://www.geogebra.org/m/pwrx2uzf; a related applet is available at https://www.geogebra.
org/m/x22etuhc.

The Research Journal of Mathematics and Technology, Volume 14, Number 1 

Page 57 of 133

https://www.geogebra.org/m/pwrx2uzf
https://www.geogebra.org/m/x22etuhc
https://www.geogebra.org/m/x22etuhc


Figure 5: The line is not tangent to the circle

li := y = r*sin(t) + sin(t)*(x - r*cos(t))/cos(t);
yP := subs(x = d, rhs(li));
xM := r*cos(t);
yM := yP;
p1 := x - xM;
p2 := y - yM;
p1 := subs(cos(t) = (-uˆ2 + 1)/(uˆ2 + 1), p1);
p2 := subs(cos(t) = (-uˆ2 + 1)/(uˆ2 + 1), subs(sin(t) = 2*u/(uˆ2 + 1), p2));
p1 := simplify(p1*denom(p1));
p2 := simplify(p2*denom(p2));
J := <p1, p2>;
JE := EliminationIdeal(J, {d, r, x, y});

The output provides an implicit equation for the hyperbolism. After simplification, it reads as follows:

x2y2 + d2x2 − d2r2 = 0 (7)

As expected, for d = r, we have Equation (4). Figure 6 shows hyperbolisms of the same circle for 4
different lines whose respective equations are x = 1/2, x = 1, x = 2 and x = 3, from the innermost
to the outermost curve.

Their differences are emphasized in Figure 7, in an orthogonal but not orthonormal system of
coordinates (therefore, the circle does not ”look like” a circle) . These are screenshots of an animation
programmed with Maple, with the animate command, as follows:

ac := animate(plot, [[r*cos(t), subs(d = A, yP), t = 0 .. 2*Pi]],
A = 0.5 .. 4, frames = 50, color = red, thickness = 3)

Here too, as in subsection 2.2, the animation provides a visualization of the fact that for different
values of the parameters, the obtained curve has the same topology.
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Figure 6: The line is not tangent to the circle - several plots

Figure 7: 4 screenshots of the Maple animation

3.2 The circle passes through the origin
We consider now a circle C passing through the origin and centered on the x−axis. The circle C has
equation

(
x− a

2

)2
+ y2 =

(
a
2

)2. We take a line D : x = b, where b < a and the point O is the origin.
The construction is displayed in Figure 8. The segments on the left are used instead of sliders.

A plot of the geometric locus of the point M (the Tracer) when M0 (the Mover) runs over the circle
is obtained by the Locus command. Not as in the previous section, the command LocusEquation
does not provide an answer. Therefore, algebraic computations have to be performed using the CAS.

First, we derive a parametric presentation for the circle C, using the intersection of the circle and
of a line through the origin with slope t (pay attention that this will be the generic line OM0){

x = a
t2+1

y = at
t2+1

(8)

For the point P : if xP = b, then yP = tb and M has coordinates{
x = a

t2+1

y = tb
. (9)

We define polynomials

P1(x, y) = x(t2 + 1)− a and P2(x, y) = −b ∗ t+ y. (10)
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Figure 8: The line is a secant of the circle

Let J =< P1, P2 >. By elimination of the parameter t, we obtain the following implicit equation of
degree 3:

xy2 + b2x− ab2 = 0. (11)

Note that for b = a, i.e. the line is tangent to the circle at the end point of a diameter passing by the
origin, the curve is a Witch of Agnesi.

4 Piriform quartics

4.1 Hyperbolism of a piriform quartic curve
We refer to [19] for the implicit and parametric presentation of the curve. A piriform curve is a quartic
P whose equation is

b2y2 = x3(a− x), (12)

where a and b are positive parameters. In Figure 9 (a screenshot of a GeoGebra applet8), these
parameters are determined by 2 segments, in order to have a purely geometric construction. This
figure correspond to the case (a, b) = (3, 2). A plot is obtained and, simultaneously, an implicit
equation, which reads as follows:

x(9x2 − 54x+ 4y2) = 0 (13)

The factor x determines the y−axis, emphasized in the Figure. This component is irrelevant to the
geometric question; it appears because issues related to Zariski topology. Such issues are discussed
in [11], and are beyond the scope of the present article. The 2nd factor determines an ellipse, whose
equation can be written as follows:

(x− 3)2

9
+

y2

81
4

= 1 (14)

8https://www.geogebra.org/m/smcehrzy
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Figure 9: Hyperbolism of a piriform curve

enabling to find the geometric characteristic elements of the ellipse. This is the desired hyperbolism
of the piriform curve.

In order to perform the algebraic computations, it is worth to begin with a parametric presentation
of the curve P . We may use a trigonometric parametrization9:{

x = a
2
(1 + cos t)

y = a2

8b
(sin 2t+ 2 sin t)

(15)

but we have to transform it into a rational parametrization. We choose a different way. Any line
but the y−axis through the origin intersects again the curve P . Let L be the line whose equation is
y = tx, t ∈ R. We use the following Maple code:

pear := bˆ2*yˆ2 - xˆ3*(a - x);
l := -t*x + y;
solve({l = 0, pear = 0}, {x, y});
par := allvalues(%[2]);

The output gives two components, given by:

(x, y) =

(
a

2
+

√
−4b2t2 + a2

2
, t

(
a

2
+

√
−4b2t2 + a2

2

))
(16)

and

(x, y) =

(
a

2
−

√
−4b2t2 + a2

2
, t

(
a

2
−

√
−4b2t2 + a2

2

))
(17)

We work now with the first component, the 2nd one can be treated exactly in the same way.

9It is given at https://mathcurve.com/courbes2d.gb/piriforme/piriforme.shtml.
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Denote xP = a, yP = ta. By construction, we have:{
xM = a

2
+ 1

2

√
−4b2t2 + a2

yM = ta
(18)

Now we use the following Maple code:

p1 := x - a/2 =sqrt(-4*bˆ2*tˆ2 + aˆ2)/2;
p1 := p1ˆ2;
p1 := lhs(p1) - rhs(p1);
p2 := -a*t + y;
J:=<p1,p2>;
JE := EliminationIdeal(J, {a, b, x, y})
G := Generators(JE)[1];

whose output is the polynomial

G(x, y) = a2x2 − a3x+ b2y2 (19)

We have

G(x, y) = a2(x2 − ax) + b2y2 = a2
(
x− a

2

)2
+ b2y2 − a4

4
. (20)

Rewriting the equation under the form (
x− a

2

)2
b2

+
y2

a2
=

a2

4b2
, (21)

which is equivalent to (
x− a

2

)2(
a
2

)2 +
y2

(2b)2
= 1, (22)

we identify that the requested curve is an ellipse.

Remark 7 The obtained hyperbolism has been identified as an ellipse by algebraic means. This
appears also in the GeoGebra applet, but a slight modification may induce a big change, and the
implicit equation may not be obtained. An experimental way to check that the curve is an ellipse
consists in marking 5 arbitrary points on the curve (with the Point on Object command) and determine
a conic by 5 points on it (there is a button driven command for this). This is a numerical checking, not
a symbolic proof, but may enable students to proceed further. Of course, the algebraic computations
that we performed with the CAS are a must.

4.2 A piriform curve as antihyperbolism of a circle
The choice of the original curve in previous subsection incites to have a look at piriform curves from
another point of view; see [20, 19].

Definition 8 With the notations of Definition 1, the inverse transformation (x, y) →
(
x, xy

a

)
is called

antihyperbolism.
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Screenshots of a GeoGebra applet10 are displayed in Figure 10. Exploration using the sliders show
that for |b| > a, the piriform curve lies inside the circle and is tangent to it at A. For −a < b < a,
the curve is part inside and part outside of the circle, and is still tangent to the circle at A, but from
outside.

Figure 10: A piriform quartic constructed from a circle - exploration with the sliders

5 Hyperbolism of a nephroid
Let C be a circle whose center is at the origin. The envelope of the family of circles centered on C and
tangent to the y− axis is a sextic called a nephroid [16]. By that way the curve has been constructed
in Figure 11, which is a screenshot of a GeoGebra applet11. We denote the nephroid by N . Later, this
figure will enable to compare the hyperbolism of N with a hyperbolism of a circle, as described in
Subsection 2.1.

Figure 11: Comparison between hyperbolisms of a nephroid and of a circle

A general implicit equation for a nephroid is

4(x2 + y2 − a2)3 = 27a4x2, (23)

10https://www.geogebra.org/m/yfq7wmqz
11https://www.geogebra.org/m/pyhk9qvr
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where a is a positive parameter. The curve N can also be described by a parametric presentation:{
x = 2a sin3 t

y = a(1 + sin2 t) cos t
(24)

To construct a hyperbolism of N with respect to the origin and to a vertical line, we follow the same
path as in previous sections. This begins with deriving from Equation (24) a rational parametrization.
Applying the substitution in Equation (3), we obtain:{

x0 =
−u6−9u4+9u2+1

(u2+1)3

y0 =
16au3

(u2+1)3

(25)

The coordinates of P are thus {
xP = b

yP = (−u6−9u4+9u2+1)b
16au3

and the coordinates of M are {
xM = 16au3

u2+1)3

yM = (−u6−9u4+9u2+1)b
16au3

(26)

We run now the following Maple code, similar to what we did already:

p1 := x*denom(xM) - numer(xM);
p2 := y*denom(yM) - numer(yM);
J := <p1, p2>;
JE := EliminationIdeal(J, {a, b, x, y});
G := Generators(JE)[1];
evala(AFactor(G));

The last command is intended to check that the obtained polynomial G(x, y) is irreducible. We have
here a polynomial of degree 12, which fits Remark 3:

G(x, y) = 4a6x6y6 − 12a6b2x4y4 + 12a4b2x6y4 + 12a6b4x2y2 − 24a4b4x4y2

+12a2b4x6y2 − 4a6b6 − 15a4b6x2 − 12a2b6x4 + 4b6x6.
(27)

Figure 12 shows the curve N for a = 1 and hyperbolisms with respect to the origin and the line whose
equation is x = b for b = 1/2, 2, 3.

6 A construction of a lemniscate
The construction proposed in this section is slightly different from a hyperbolism. Studying at least
one case may be an appeal to explore more cases.

We consider a circle C whose center is the origin and radius r and a line D whose equation is
x = b. Take a point M0 on the circle C; the point P is the intersection of D with the horizontal line
through M0. Then we define M to be the point of intersection of the line (OP ) with the vertical line
through M0. The geometric locus of M when M0 runs on C is a lemniscate. This is illustrated in
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Figure 12: Three hyperbolisms of the same nephroid with respect to the origin

Figure 13: The circle is centered at the origin and the line intersects it.

Figure 13. The figure shows screenshots of a GeoGebra applet12; using the sliders may help to study
the family of curves.

For b < r, the lemniscate lies part out of the circle. For b > r, the lemniscate is bounded by the
circle. In both cases, the lemniscate is tangent to the circle at its vertices, i.e. its points on the x−axis
different form the origin.

GeoGebra could not give an implicit equation for the lemniscate, we will look for such an equation
via algebraic computations. We choose the same parametrization as above for the circle, i.e. the
coordinates of M0 are given by:

(x0, y0) =

(
a · 1− u2

1 + u2
, a · 2u

1 + u2

)
. (28)

Then the coordinates of P are

(xP , yP ) =

(
b, a · 2u

1 + u2

)
.

The equation of the line (OP ) is y = 2au
b(1+u2)

· x, whence the coordinates of M :

(xM , yM) =

(
a · 1− u2

1 + u2
,
2a2u(1− u2)

b(1 + u2)2

)
. (29)

12https://www.geogebra.org/m/zkgmxume
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We apply the following code:

p1 := x*denom(xM) - numer(xM);
p2 := y*denom(yM) - numer(yM);
J := <p1, p2>;
JE := EliminationIdeal(J, {a, b, x, y});
G := Generators(JE)[1];

and obtain the polynomial
G(x, y) = a2x4 − a4x2 + a2b2y2. (30)

The vanishing set of G(x, y) in the real plane is called a lemniscate of Gerono.

7 Special features of the curves which have been obtained
In Section 2, the obtained hyperbolisms show common features:

1. The curve has two disjoint components. On the one hand, these components cannot be dis-
tinguished by algebraic means as the defining polynomial is irreducible over the field of real
numbers. This can be proven using Maple command evala(AFactor(...); the need for that com-
mand, and not the ordinary Factor command, has been analyzed in [13].

2. The geometric basis of the construction induces easily that the two components are symmetric
about the y−axis.

3. From the exploration, the y−axis seems to be an asymptote to both. Actually, this is a conse-
quence of the construction: when the point M0 gets arbitrarily close to the y−axis, the slope of
the line (OM0), and thus the y−coordinate of M , tend to infinity.

Actually the origin does not belong to the hyperbolism of the original curve. It can be obtained
only if M0 is at the origin, but in this case the line (OM0) is not defined.

8 Discussion
In this paper, we considered a question in plane geometry, which can look rather simple. Its translation
using technology revealed a more complicated situation that foreseen. The 2 first examples may be
treated by hand, with students having learnt an elementary course in the spirit of [2], but quickly the
computations become heavier. The problem can be understood by a regular High-School student13,
but the algebraic machinery beneath is then out of reach, as it belongs to Computer Algebra, and
uses algorithms from Ring Theory. Moreover, we deal here with curves of higher degree than what
High-School students learn, as explained in section 1.

Along the paper, implicitization has been performed using polynomial rings and elimination.
Maple has an implicitize command, but we preferred to have our computations more understand-
able, and not to use this command as a blackbox. The user has no access to the algorithms, but via

13Decades ago, such constructions were performed in High-School by hand using paper, pencil and ruler. Only in easy
cases, an equation was derived.
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reading the paper in reference on the help page of the command. On the one hand, an educator has to
make a decision between low-level and high level commands (see [14]). On the other hand, what can
be done depends on the students’ theoretical background; sometimes it is necessary to use the CAS
in order to bypass a lack of knowledge (see [8]).

Moreover, respective affordances of the two kinds of software used here have been analyzed in the
past, and the importance of networking between them has been emphasized, expressing a wish to see
development of tools for an automatic dialog between the kinds of software [25, 26, 12]. See also [31]
for more recent developments with GeoGebra. Here the strengths of both kinds appeared sometimes
different from what we were accustomed. Anyway, it is only natural that for different questions, the
respective abilities and strengths of the different kinds of software which are used may vary.

Finally, the lemniscate of Gerono in Section 6 shows that classical constructions can be imitated
with slight modifications and lead to software’s broader experience. After all, curiosity is the main
engine for exploration and discovery. The 4 C’s of 21st Century Education [24] are well-known; they
are Collaboration, Communication, Critical Thinking and Creativity. Nevertheless, a 5th C has to be
added, namely Curiosity, without which the 2 last C’s cannot appear. As in [10], we illustrate this
here with the construction and the exploration of plane curves. Of course, this claim is true in much
larger domains.
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[20] Ferréol, R. (2017). Hyperbolism and Antihyperbolism of a Curve - Newton Transforma-
tion, https://mathcurve.com/courbes2d.gb/hyperbolisme/hyperbolisme.
shtml (retrieved November 2024).

[21] Fischer, G. (2001). Plane Algebraic Curves, Student Mathematical Library 15, American Math-
ematical Society.

[22] Gao, X.S. and Chou, S.C. (1992). Implicitization of rational parametric equations, Jour-
nal of Symbolic Computation 14 (5), 459-470. DOI: https://doi.org/10.1016/
0747-7171(92)90017-X.
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Abstract

Geometric loci are an important topic in geometry. We explore constructs of plane curves and
of space curves inspired by space trajectories (bicircular and tricircular motions). The exploration
relies on joint usage of Dynamic Geometry Software (DGS) and of a Computer Algebra System
(CAS), and involves automated methods to determine loci and sometimes dichotomy methods.
The computer assisted work reveals some surprises, in particular the respective roles of the two
kinds of software may be different from what previous works revealed. If previously the roles
were quite distinct, DGS for exploration and numerical approach, and CAS for symbolic proof,
here the CAS is needed for numerical methods also. The curves are described by trigonometric
parametrization, and implicitization is performed using elimination, for 2D and 3D models. Fi-
nally, we discuss approaches to developments using models and elaborate on the importance to
develop automatic dialog between kinds of software.

1 Introduction

1.1 A motivation: frequent presentation of transfer orbits of space probes.
A modern way to attract students to study mathematics consists in proposing activities around items
from the daily news: for example, events related to the International Space Station (ISS), the almost
simultaneous launching of three Mars-bound spacecrafts in February 2021 and their arrival 6 months
later, the James Webb space telescope launched 10 months later, etc. Since then, all of these provide
big titles. More recently, the race to the Moon, American Artemis lunar program, the Chinese mission
to the far side, attract much attention. The general audience discovered that a spacecraft’s trajectory
from the Earth to Mars is not straight but curved (Figure 1).

*Supported by the CEMJ Chair at JCT
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Figure 1: Transfer orbits between the Earth and another planet

Roughly speaking, each of these trajectories is the union of arcs of ellipses. The shape of the
trajectory and the velocity of the spacecraft are ruled by the so-called Kepler laws (Karttunen et al.,
2008). Kepler’s 1st law reads that the trajectory of an object P orbiting an object S under the influence
of gravitation only is an ellipse with S at one of the foci. Kepler’s 2nd law explains how the velocity
changes along the trajectory (see Figure 3): flying from C to D or from E to F takes the same time if,
and only if, the curved triangles SCD and SEF have equal areas.

Figure 2: Kepler laws.

The Israeli Moon-bound probe Beresheet was planned to move along ellipses. At specific times,
thrust has been exploited to increase eccentricity, keeping the Earth as a focus, until the ellipse en-
globes the Moon. Then the probe has been slowed down to be captured by the Moon’s gravitational
field. At that time the trajectory is an ellipse with the Moon at a focus. The probe orbits te Moon in
the original direction. Figure 3 shows a diagram of the planned trajectory.

Artemis’s trajectory seems more complicated (Figure 4). The diagram on the left shows the points
were thrust is operated to change the geometric characteristics of the trajectory. After the engines
stop, the motion is again ruled by Kepler laws, and the trajectory follows an arc of a new ellipse with
the Sun at a focus. At some time, the probe is slowed down to be captured by the gravitation field of
the Moon. From now on, the orbit is an ellipse with the Moon as a focus. The figure on the left seems
static, but the figure on the right expresses the fact that actually the Moon moves on its orbit around
the Earth, pulling the spacecraft with it. Simple models in 2D and 3D (taking into account the fact
that the Sun also moves) have been displayed in [13]
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Figure 3: Beresheet’s trajectory (Credit: NASA - SpaceIL)

Figure 4: Diagrams of Artemis trajectory (Credit: NASA)
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These two examples explain why we explore bicircular and tricircular motions, (a) when all the
components are oriented in the same direction(Section 2) and (b) when one component is retrograde
(Section 3).

All this is a little bit caricatural. In reality, more than one space object influence the trajectory,
and the axis of a planet and/or a natural satellite may make some angle with the orbital plane. For
example, the axis of the Earth makes an angle of 23o27′ with the ecliptic plane. So, the ecliptic plane
and the equatorial plane of the moon may be different. This influences the geometric description of
the trajectories. Moreover, for travelling from the Earth to the Moon, engineers have to take into
account the gravitational influence of Mars also. As we are interested in simple models accessible to
either upper-high school or to beginning undergraduates, we simplify all this.

According to Kepler laws, the planetary motion is well described by an equation in polar coordi-
nates, namely

r =
p

1 + εθ
,

where r is the distance from the planet to the Sun, ε is the eccentricity of the ellipse and θ is the
angle to the planet’s current position from its position closest to the Sun (called aphelion). Early
undergraduates’ literacy with polar coordinates is generally not so high. Therefore, we chose to
work with parametric presentations for plane curves, which yielded the construction of, sometimes,
classical curves such as epitrochoids, epicycloids, etc. The orbits of the planets of the Solar System are
ellipses whose eccentricity is very close to 0, therefore for a 1st approximation, suitable for beginners,
the orbits have been modeled by circles centered at the Sun, and velocity is constant, encoded in the
angular velocity. Other simplifications were as follows:

• The mean distance Sun-Earth is equal to 1 (astronomical unit, A.U.), whence the definition of
E at the beginning of Section 2.

• The period of the Earth on its orbit is 1 (same remark as above).

• The orbital data for another planet is given in proportion to these data. We caplin in next section
why we decided not to use actual orbital data.

Actually, the only ”true” orbital data we can be interested in consists in distance between Sun and
planets, or between planets and their satellites, either natural or artificial. At the beginning of next
section, we explain why this is irrelevant to the present work. The author teaches in an advanced
course about satellites and Earth observation. There, the ”true” shape of orbits, (whence variable
velocity, etc.), inclination with respect to the equator, are considered. Anyway, the intuition acquired
with the simple models presented here helps.

1.2 What are we doing, what are the educational goals?
The ratio between the distances Sun-Earth and Earth-Moon is close to 413. No hope to present on a
screen the Sun and trajectories, neither of the Moon around the Earth, nor of an object orbiting the
Moon. Therefore, we build the activities with arbitrary values of the parameters, not with genuine
orbital data. Nevertheless, these choices provide constructions of interesting curves, from which the
student can imagine what happens in space. Most of the examples in [13] are planar, even when
taking the Sun’s motion into account: the Sun, the planet and the satellite move in the same plane (in
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Section 2). Animations and computations are performed with a Dynamic Geometry Software (DGS,
here GeoGebra) and a Computer Algebra System (CAS, here Maple 2024), and networking between
them. For one example, we compute an implicit equation for the trajectory, using Elimination. We
provide Maple session’s code.

In Section 4, we consider a model of a satellite moving around the planet on an orbit not included
in the plane of the planet’s orbit, here a polar orbit. In this last case, we begin working with paramet-
ric presentations for the orbits and implicitize the presentation. As for any space curve, an implicit
presentation shows it as the intersection of two surfaces (i.e. we look for 2 polynomial equations).
This provides a new opportunity to compare the affordances of plotting with a Dynamical Geome-
try Software (DGS) and with a Computer Algebra System (CAS), comparing parametric plots and
implicit plots.

The activities that we propose are based on exploration and discovery in a technology-rich en-
vironment. The outcome is multi-faced: plots based on numerical data, search for exact (symbolic)
expressions, implicitization, etc. Some of the activities with DGS provide some knowledge, but fur-
ther exploration has to be performed with the CAS, among other issues, analyzing numerical solutions
of a trigonometric equation (Section 3). The core of the search is based on thinking and computing in
a way, which has been learnt by undergraduates in a 1st Calculus course.

2 Tricircular motion: a satellite on a direct orbit around the
Moon in the SUN-Earth-Moon plane

We consider a moving point E given by (xE, yE) = (cos t, sin t). An object M orbits E according to

(xM , yM) = (cos t+ r cos(ht), sin t+ r sin(ht)) , (1)

where r is the distance from E and h encodes the orbital period1.
Now, we define an object Sat by the following formula:

(xSat, ySat) = (xM , yM) + r/2(cos(3hu), sin(3hu)). (2)

The orbit of Sat looks more complicated in any case. A GeoGebra applet [S1] is available at https:
//www.geogebra.org/m/mnsdv3fz; the reader is invited to explore with the sliders. The
orbits can be visualized (a) with the command Locus and (b) running an animation with Trace On.
The locus of E is a circle and the orbit of M is an epicycloid3. Examples are the dotted curves in
Figures 5,6 and 7.

Figure 5 shows 3 cases, for r = 0.2 and h = 3, 5, 6, 8, 9 (from left to right).
For for r = 0.4 and h = 3, 4, 5, 6, 8 (from left to right), we have Figure 6, and for r = 0.8 and

h = 3, 4, 5, 6, 9 (from left to right), we have Figure 7:
At first glance, we conjecture that for odd h, both the x−axis and the y−axis are axes of symmetry,

but for even h, only the x−axis is such. Of course, this requests a symbolic proof. Rotational
symmetries are not very apparent, but may exist. Broader exploration can be made with the above

1For the sake of simplification, we consider here only integer values for h. For non integer values, determining the
motion periodicity is harder. Such examples will be studied in a f2urther work.

3See https://mathcurve.com/courbes2d.gb/epicycloid/epicycloid.shtml.
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Figure 5: Three coplanar movements in the same direction - r = 0.2

Figure 6: Three coplanar movements in the same direction - r = 0.4

Figure 7: Three coplanar movements in the same direction - r = 0.8
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mentioned applet.Note that both trajectories, M viewed from the Sun and Sat viewed from E, are
epicycloids. The composition of the motions yield the complicated curves.

The comparison of two different points of views is interesting. On the basis of Tycho Brahe’s
observations, Kepler drew a sketch of the orbit of Mars viewed from the Earth [22]; the curve that he
plotted (Figure 8) is very similar to curves obtained in other situations (see [7]). In an other direc-

Figure 8: Kepler’s sketch of Mars’s orbit when viewed from the Earth

tion, the website https://mathcurve.com/courbes2d.gb/courbes2d.shtml shows
constructions of epicycloids by means of a circle rolling on another circle. We can construct the
complicated curves obtained in this section using a circle rolling on a circle rolling on a 3rd circle.
This is beyond the scope of the present paper. By the time these rows are written, the author is waiting
for the outcome of students’ activities.

3 A satellite on a retrograde lunar orbit in the SUN-Earth-Moon
plane

3.1 Equations and first examples
Here too, 3 different coplanar motions compose the satellite motion, when viewed from outside: the
planet E, its moon M and the satellite, all of them described by trigonometric parametric presentation.
The difference with the previous section is that here the satellite moves in retrograde direction. Recall
Artemis trajectory, where the probe orbits the Moon in retrograde direction (Figure 4). Models for the
composition of two direct motions and a retrograde 3rd motion have already been described in [13].
It provides non classical curves, as shown in Figure 10. The satellite moves according to the equation

(x, y, z) = (cosu, sinu) + r(cos au, sin au) + s(sin bu, c cos bu); u ∈ [0, 2π]. (3)

WLOG, we chose to work with coefficients 1/3 and 1/2, other choices could provide curves with
similar properties. For the mathematical work, the given interval can be replaced by the whole of
R, then the parametrization determines infinitely many copies of the same geometric locus. But
working with software requests a closed interval. With a suitable choice of the interval, and with the
increasing option for animation with a slider, GeoGebra mimics infinitely many periods on the orbit.
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The retrograde motion of the 3rd object is encoded by the last term in the sum. A GeoGebra applet
[S2] is available at https://www.geogebra.org/m/p7uaewbc.

For a = 1, the motion is actually bicircular and the curve is a hypotrochoid4.Examples with
r = 1/3 and s = 1/2 are displayed in Figure 9, for b = 3, 4, 5, 6, 9.

Figure 9: Three movements, one in retrograde direction - classical curves

The reader is invited to play with the 5 parameters involved and explore the existence of self-
intersections and of cusps. In [13], we show various examples, including the so-called Mystery
Curves, and apply them for creating Math Art and 3D printed objects5. Another point of view on
the Mystery Curves can be found in [4]. Figure 10 displays the output for r = 1/3, s = 1/2 and
(a, b) = (4, 8), (6, 14), (8, 14), (8, 17) from left to right. The two curves on the right show also a
partial view on how the animation is displayed.

Figure 10: Three movements, one in retrograde direction

3.2 Exploration of the shape of the curves
Using the different sliders to make the values of the parameters vary, provides activities with different
kinds of focus, according to teacher’s and students’ creativity. One of them is to study the symmetries
of the curves. Rotational symmetries can appear, but the greater the parameters a and b, the harder to
understand are the curves and rotational symmetries may remain unidentified. Generally the curves
present one or two axial symmetries, but not more. Rotational symmetries of order 5 appear for other
choices of the parameters, e.g., for (a, b) = (6, 9). All this is purely experimental, but in this last case,
computations with a CAS may be possible. Note that the explorations described here may provide

4See the Mathcurve page at https://mathcurve.com/courbes2d.gb/hypotrochoid/
hypotrochoid.shtml.

5Animations can be found in [14].
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conviction, but it is not a proof (for detailed analysis of the difference, and of what should be done,
refer to the book [19]).

Let us study one example. Figure 12 corresponds to (r, s) = (0.5, 0.3) (a, b) = 11, 4). The curve
seems to have a rotational symmetry of order 5. This can be explored in various ways. One of them
can be to prove that u ∈ R, Sat(u + 2π/5) = Sat(u), but this may be unilluminating, actually only
numerical, as there is no simple closed formula for these sines and cosines.

3.3 A 1st exploration - symmetry
On the basis of the conjecture that there is a 5-fold rotational symmetry, we consider one arc of the
curve, given by

(x, y, z) = (cosu, sinu) +
1

3
(cos au, sin au) +

1

2
(sin bu, c cos bu); u ∈

[
0,

2π

5

]
. (4)

The corresponding arc can be plotted with GeoGebra using the parametric presentation and the com-
mand Locus(Point creating the locus, slider). Then the arc should be rotated about the origin by an
angle of 2π/5. As the locus appearing on the screen is not recognized by the software as a geometric
construct, the automatic command for rotation does not work. The point A defined by Equation (4)
has to be rotated, using GeoGebra’s button for rotations, and is automatically identified as depending
on the parameter (the slider) u. Now the Locus command works. The process has to be iterated 4
times. The arcs are shown in Figure 11 with different colors and dots. A GeoGebra applet [S5] is

Figure 11: Exploration of the 5-fold symmetry of one of the curves

available at https://www.geogebra.org/classic/vhdkpfgk.
This process can be adapted to every case where a rotational symmetry seems to appear. Ex-

ploration with variable parameters (a, b) provides numerous examples with rotational symmetries of
exotic order (we mean not the simple cases generally shown in class, but order 7,11, 13 etc.). Exten-
sion of such constructs may provide interesting mathematical art, as in [7, 13].

3.4 A 2nd exploration - circumcircle
Here, the exploration is visual only. The Locus command provides a plot based on numerical data,
and the locus on the screen is not a geometrical construct. Therefore, the button and the intersection
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commands do not work here. Until now, we do not have a symbolic equation either. As the coordinates
are sums of sines and cosines, they are bounded. Is it possible top find a circumcircle? The situation
is illustrated in Figure 12.

Figure 12: The curve has a rotational symmetry of order 5

The number of points of intersection of the curve with a circle centered at the origin can give an
interesting indication. The exploration yields a radius approximatively equal to 1.6 fro a circumcircle.
In order to check this, it is necessary to solve the following equation

x(t)2 + y(t)2 = 1.62 (5)

for the unknown t. Hand-made computations are unilluminating, whence the importance to use a
CAS. Even with technology this is not trivial. After more than one hour on a recent computer with
a strong CPU, Maple did not provide an answer. Further attempts have been performed for (a, b) =
(6, 9). Experimentation with GeoGebra suggests that the curve is circumscribed by a circle centered
at the origin with a radius R between 1.7 and 1.8. Further experimentation has been made with Maple,
solving equations similar to Eq. (5) for variable radius. For each tested value of the radius, Maple
gave an immediate answer.

Experimentation provide the following output:

• For 1.7 ≤ R ≤ 1.73, Equation (5) has 10 real solutions and numerous complex non real
solutions. This corresponds to 10 points of intersection of the circle with the curve C. The
GeoGebra plot reveals that the circle is not a circumcircle to C.

• For R ≥ 1.74, Equation (5) has only non real solutions. The circle does not intersect the
curve C. A approximation of the radius can then be found numerically by a dichotomy method
(similar to the dichotomy method learnt by undergraduates in a 1st Calculus course6)

A similar process can be applied with GeoGebra. The radius of the circle has to be defined by a slider,
and the increment of the slider can be defined as smaller than the default one. The precision of the
work depends here on te user’s hand.

6This is a good opportunity to enhance the fact that learning ways of thinking is as important as learning new notions
and theorems.
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4 A satellite on a polar lunar orbit

4.1 With ”fixed Sun”
Because of the Earth revolution about its axis, a satellite orbiting the Earth on a polar orbit may pro-
vide imaging of the entire Earth surface, whence its importance for Earth observation. Details are to be
found in [5]; an online simulator is available at https://observablehq.com/@jake-low/
satellite-ground-track-visualizer. Here, for visualization and animations, the model
requests usage of a software for 3D geometry. We use GeoGebra’s 3D Graphics package. The Sun is
placed, as usual, at the origin. A ”planet” E is defined by the following equations (the coefficient 2
has be introduced in order to have ”reasonable” proportions on the plot):

xE(t) = 2 cos t

yE(t) = 2 sin t

zE(t) = 0

. (6)

and a moon M in the plane of the orbit of E by
xM(t) = 2 cos t+ 0.4 cos at

yM(t) = 2 sin t+ 0.4 sin at

zM(t) = 0

, (7)

where a is a positive parameter. The GeoGebra commands are as follows:

E=2(cos(u),sin(u),0)
M=E+0.4 (cos (au),sin(au),0)
Sat=M+0.4(cos(bu),sin(bu),0)

Sliders for a and for b have to be defined; here, we did it for integer values (otherwise, the pe-
riodicity issue becomes hard to deal with - we intend to addres this issue in a further work). The
coefficients 0.4 and 2 have been chosen in order to have a readable plot. We mentioned already that
the ratio between true distances between Sun, Earth, Moon, and artificial satellites in the Solar System
do not enable to display faithful models on a computer screen.

Now we define a satellite Sat around M orbiting in a plane perpendicular to the planes of the
orbits of E and M . 

xSat(t) = 2 cos t+ 0.4 cos at

ySat(t) = 2 sin t+ 0.4 sin at

zSat(t) = 0.4 cos bt

. (8)

Figure 13 shows the curves obtained for different values of the parameters. These are snapshots of a
GeoGebra applet [S3], available at https://www.geogebra.org/m/guwguzgk. On the left
are displayed the orbits of E and M , on the right the 3D situation is shown, including the orbit of
Sat. It is clear that the projection of the orbit of Sat on the x, y−plane is the orbit of M . This one is a
epicycloid, a well-know curve (see https://mathcurve.com/courbes2d/epicycloid/
epicycloid.shtml). For example, (a, b) = (3, 2) gives a nephroid.
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Figure 13: Polar orbits around a moon
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4.2 With ”moving Sun”
For the sake of simplicity, we consider a ”Sun” moving according to the parametric presentation
(x, y, z) = (0, 0, u); u ∈ R. The only modifications to the commands are:

Sun=(0,0,u)
E=Sun+2(cos(u),sin(u),0)

The other points are changed automatically. Figure 14 shows two cases, corresponding to (a, b) =
(3, 2) on the left and to (a, b) = (5, 6) on the right. The plane containing the orbits of E and M has
been made apparent, and moves according to the Sun.

Figure 14: Polar orbits around a moon - a dynamic view with moving Sun

5 Implicitization

5.1 The process and the implicit equation – a planar situation
All the situations and activities presented above are based on trigonometric parametric equations for
the different curves. For graphics, these provide accurate plots, as explained in [31]. For other is-
sues, it may be better to have implicit equations. Therefore, books such as [30, 25, 29] and online
encyclopedias of curves display both parametric and implicit equations (also polar equations), when
possible. Implicitization is not an easy task, and requires heavy algebraic machinery. For our trigono-
metric parametric equations, sines and cosines have to be substituted by rational expressions, then
polynomials can be defined. They generate ideals, for which algorithms from Gröbner bases theory
and Elimination are generally used. For example, this has been done extensively in [6].

The situation given here is more complicated, as we deal with tricircular motion. As we saw in
Equations (8), sines and cosine appear with 3 different angular velocities, which makes the substitu-
tion more intricate. We show here only one example.

The curve presented in Figure 12 has parametric equations

(x, y) = (cos(u) + 0.5 cos(11u) + 0.3 sin(4u), sin(u) + 0.5 sin(11u) + 0.3 cos(4u)) (9)
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It is well-known that for every u ∈ R, it exists a t ∈ R such that{
cosu = 1−t2

1+t2

sinu = 2t
1+t2

. (10)

On the one hand, using De Moivre formula, we have:

(cosu+ i sinu)4 = cos 4u+ i sin 4u.

On the other hand, Newton binomial yields:

(cosu+ i sinu)4 = cos4 u+ 4i cos3 u sinu− 6 cos2 u sin2 u− 4i cosu sin3 u+ sin4 u.

Comparing real parts and imaginary parts in bote equations, we obtain:{
cos 4u = cos4 u− 6 cos2 u sin2 u+ sin4 u

sin 4u = 4 cos3 u sinu− 4 cosu sin3 u
. (11)

Substituting here Equations (10) and simplifying, we obtain:{
cos 4u = t8−28t6+70t4−28t2+1

t2+1)4

sin 4u = −8t7+56t5−56t3+8t
(t2+1)4

(12)

By the same method we obtain:
cos 11u = −11 cosu sin10 u+ 165 cos3 u sin8 u− 462 cos5 u sin6 u+ 330 cos7 u sin4 u

−55 cos9 u sin2 u+ cos11 u

sin 11u = − sin11 u+ 55 cos2 u sin9 u− 330 cos4 u sin7 u+ 462 cos6 u sin5 u

−165 cos8 u sin3 u+ 11 cos10 u sinu

(13)

and finally7
(t2 + 1)11 cos 11u = −t22 + 231t20 − 7315t18 + 74613t16 − 319770t14

+646646t12 − 646646t10 + 319770t8 − 74613t6 + 7315t4 − 231t2 + 1

(t2 + 1)11 sin 11u = 22t21 − 1540t19 + 26334t17 − 170544t15 + 497420t13

−705432t11 + 497420t9 − 170544t7 + 26334t5 − 1540t3 + 22t

(14)

Now we substitute into Equations (9):

10(t2 + 1)11x = −15t22 − 24t21 + 1065t20 − 36925t18 + 504t17 + 372315t16 + 1536t15

−1599750t14 + 1680t133232810t12 − 3232810t10 − 1680t9 + 1599750t8 − 1536t7

−372315t6 − 504t5 + 36925t4 − 1065t2 + 24t+ 15

10(t2 + 1)11y = 3t22 + 130t21 − 63t20 − 7500t19 − 315t18 + 132570t17 − 273t16

−850320t15 + 990t14 + 2491300t13 2730t12 − 3522120t11

+2730t10 + 2491300t9 + 990t8 − 850320t7 − 273t6 + 132570t5 − 315t4 − 7500t3 − 63t2

130t+ 3
(15)

7The equations are presented as they are for technical reasons.
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Denote by P1(x, y, t) (resp. P2(x, y, t)) the polynomial obtained by subtracting right hand side of 1st
(resp. 2nd) equation from its left hand side. These polynomials generate an idela I =< P1, P2 > in
R[x, y, t]. By elimination we obtain (quickly) one polynomial in x, y of degree 22. It is too long for
being written here, we obtained it within a Maple session using the PolynomialIdeals package.

Here is the Maple code [S6] for the session. Note that the coefficients 0.5 and 0.3 have been
entered as 1/2 and 3/10 respectively, as a priori the algorithms in PolynomialIdeals do not like floating
point.

restart; with(PolynomialIdeals);
trig4 := (cos(u) + sin(u)*I)ˆ4;
cos4 := evalc(Re(trig4));
sin4 := evalc(Im(trig4));
# rational expressions for cosine and sine
cos4rat := subs(cos(u) = (-tˆ2 + 1)/(tˆ2 + 1), subs(sin(u) = 2*t/(tˆ2 + 1), cos4));
cos4rat := simplify(cos4rat);
sin4rat := subs(cos(u) = (-tˆ2 + 1)/(tˆ2 + 1), subs(sin(u) = 2*t/(tˆ2 + 1), sin4));
sin4rat := simplify(sin4rat);
trig11 := (cos(u) + sin(u)*I)ˆ11;
cos11 := evalc(Re(trig11));
sin11 := evalc(Im(trig11));
cos11rat := simplify(subs(cos(u) = (-tˆ2 + 1)/(tˆ2 + 1),

subs(sin(u) = 2*t/(tˆ2 + 1), cos11)));
sin11rat := simplify(subs(cos(u) = (-tˆ2 + 1)/(tˆ2 + 1),

subs(sin(u) = 2*t/(tˆ2 + 1), sin11)));
expand(numer(sin11rat));
# the output was long - that is a way to have a shorter expression
xsat := (-tˆ2 + 1)/(tˆ2 + 1) + (1/2)*cos11rat + (3/10)*sin4rat;
xsat := simplify(xsat);
ysat := 2*t/(tˆ2 + 1) + (1/2)*sin11rat + (3/10)*cos4rat;
ysat := expand(ysat);
ysat := simplify(ysat);
# definition of polynomials - pay attention to capital and lowcase letters
p1 := 10*(tˆ2 + 1)ˆ11*xsat;
P1 := 10*(tˆ2 + 1)ˆ11*x - p1;
p2 := 10*(tˆ2 + 1)ˆ11*ysat;
P2 := 10*(tˆ2 + 1)ˆ11*y - p2;
K := <P1, P2>; # definition of an ideal
KE := EliminationIdeal(K, {x, y});
Gen := Generators(KE);
Gen[1];
Gen[2];
evala(Factors(Gen[1]));

All the commands give an almost immediate answer, elimination requests a few seconds. The com-
mand Gen[2] returns an error message; it verifies that the ideal KE is generated by one polynomial.
This had to be checked, as the output is dispatched on about 30 rows. The last command checks that
this polynomial is irreducible.
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5.2 A non planar situation
Here too, we illustrate the process with an example. We consider the first case shown in Figure 13.
We have:

(x, y, z) =

(
2 cos t+

2

5
cos 3t, 2 sin t+

2

5
sin 3t,

2

5
cos 2t

)
. (16)

With the same method as above, based on Equations (10), and obtain the following rational parametriza-
tion for the curve: 

x = 4(−3t6+5t4−5t2+3)
5(t2+1)3

y = 32t(t4+1)
5(t2+1)3

z = 2(t4−6t2+1)
5(t2+1)2

(17)

We transform equations (17) into polynomials

P1(x, y, z) = 5(t2 + 1)3x+ 12t6 − 20t4 + 20t2 − 12

P2(x, y, z) = 5(t2 + 1)3y − 32t(t4 + 1)

P3(x, y, z) = 5z(t2 + 1)2 − 2t4 + 12t2 − 2

which generate an ideal J =< P1, P2, P3 >. After elimination of the parameter t, we obtain an
elimination ideal JE generated by 2 polynomials F1(x, y, z) and F2(x, y, z), such that:

F1(x, y, z) = 25x2 + 25y2 − 100z − 104

F2(x, y, z) = 125z3 + 25y2 + 250z2 + 60z − 72

It was expected to find 2 polynomials, as a space curve is defined as the intersection of two
surfaces, each one determined by an equation. The 2 surfaces are displayed in Figure 15. Note that

Figure 15: The trajectory for (a, b) = (3, 2) with implicit equations

the intersection curve is difficult to identify. To have a good idea, the plot has to be rotated on the
screen using the mouse, but even so the visual impression is not perfect. Part of the problem is the
choice of the mesh to visualize surfaces in 3D space (see [31]). The plot can be enhanced if adding
the parametric plot of the space curve. Figure 16 shows the respective plots obtained with the rational
parametrization (on the left) and the trigonometric parametrization (on the right). The plots have been
obtained using the following commands:
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(a) Rational parametrization (using the same notations as above):

cratspace := spacecurve([xsatspace, ysatspace, zsatspace], t = -15 .. 15,
numpoints = 5000, thickness = 3, color = black);

(b) Trigonometric parametrization (one period is enough):

ctrigplot := spacecurve([2*cos(t) + 2/5*cos(3*t),
2*sin(t) + 2/5*sin(3*t), 2/5*cos(2*t)],

t = 0 .. 2*Pi, color = black, thickness = 7)

Note that the trigonometric parametrization gives a complete plot, but something is missing when
using a rational parametrization. Filling the gap is not always possible because of issues related to
limits at infinity of the involved rational functions.

Figure 16: Plots with two parameterizations of the same curve

Figure 17 shows the surface and enhances the intersection curve.

6 Conclusions

6.1 Networking between technologies
The exploration and determination of geometric loci is an important topic in geometry. A few ex-
amples are provided by [1, 3, 2]. Our study relies strongly on the usage of two kind of software: a
Dynamic Geometry Software (DGS), here GeoGebra, and a Computer Algebra System (CAS), here
Maple 2024. The DGS enabled to explore the curves dynamically. It is natural to represent the dy-
namics of mobile points using a slider, and the trajectories are displayed dynamically (using Trace
On, without this the points move but the user’s eyes do not keep a lasting impression). Moreover, the
automated command Locus provides complete pictures of the trajectories. Joint usage of both helps
to have a graphical understanding of the phenomenon.

Nevertheless, for some parts of the study, the abilities of the DGS were not enough. Actually, it
is well known that for algebraic symbolic computations, a stronger software is needed. Therefore we
used Maple. In this study, we did it at two places:
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Figure 17: Visualization of the curve as intersection of two surfaces

• Implicitization involves a large amount of computations (generally transparent to the user, until
the output is displayed). We have a detailed example in subsection 5.1. This is not a new
phenomenon, for example it appears already in [6, 10, 11]. The computation of the elimination
ideal computes actually a projection. For topological reasons (work is done according to Zariski
topology), it is important to check whether the obtained polynomial is irreducible or not. It
happens that irrelevant components appear, but this is not the case.

• In subsection 3.2, the exploration process is similar the dichotomy method taught to under-
graduates for solving equations numerically. The DGS is mostly based on numerical methods,
whence the need to add other algorithms which can check the results symbolically. This is done
in the GeoGebra-Discovery companion, but not for the study here, even if we tried a more geo-
metric construction of the mobile point Sat. Here we have an originality: generally switching
from DGS to CAS is motivated by the need for symbolic computations, but here one of the
switches was motivated by the need to make a numerical exploration, which could not be done
totally with the other software..

In any case, we have here a new example of the importance of networking between different kinds of
software. Even when both kinds provide similar features, they may have different affordances. Duval
[16, 17]) explained that mathematical objects are abstract and can be approached and understood
only using different registers of representation. Traditionally, the identified registers are numerical,
symbolic, graphical, etc. The activities described here show that even within the same register, but
with different tools, the object is presented in a different way.

An important feature of a DGS is interactivity: the possibility to drag points and the availability
of sliders are central. They allow animations, with possible modifications in real time. Animations
are also available with a CAS, but they require a priori programming, and the possibility to interact

The Research Journal of Mathematics and Technology, Volume 14, Number 1 

Page 88 of 133

matha
Stamp




with the animation in real time is limited.
For a long time, wishes to develop automated networking between CAS and DGS have been

expressed clearly [27, 6, 12]. In the past, it existed for certain questions between Maple and MatLab,
but not on a very large scale. It is possible to export the outputs in a different language: Maple allows
to export the session to rtf or LaTeX format; this is useful, but not for the sake of computations and
explorations. It allows export to STL format; this is important for exploration, as this is the language
used by certain 3d printers [13]. This has also limitations, and for certain problems, we had to switch
to another language, without automated export [15]. Advances have been recently announced with
GeoGebra-Discovery [24].

Generally, a DGS and a CAS provide different registers of representation (in the sense of Duval
[16, 17]): numerical (this was almost all what was available a few decades ago), graphical, symbolic,
etc. A central issue was switching between registers, most CAS enabling to switch from symbolic to
graphical (generally via the numerical, but this may be transparent), sometimes in reversed direction,
from graphical to numerical (in DGS), more rarely from graphical to symbolic.

6.2 Modeling and Creativity
The 4 C’s of 21st Century Education are already well-known and documented, as defined in OECD
documents [26, 28]: Collaboration, Communication, Critical Thinking and Creativity. The present
paper is anew contribution to we emphasize two of theses C’s: Communication and Creativity. As
discussed in the previous subsection, Communication is understood here between machines, the man-
and-machine communication being minor, and between humans not discussed at all. As a follow-up
of [7] (where we explained being on the verge of mathematical art), we have here a new contribution
to explore Creativity, on the basis of simple models of trajectories in space.

We enhanced the exploratory aspect of the work, which has been enabled by the sliders of the
applets. It is clear that exploration request, first of all, the 5th C, namely Curiosity8.

Actually, the initial motivation was to describe/model trajectories in space (Section 1.1). Because
of the complexity of space reality, we had to switch to simple models. Generally, models are intended
to provide tools for understanding the concrete situation [20]. Here we went to another direction,
as ”true modeling” is out of reach of the visualization abilities of our computers. Choosing arbitrary
parameters may provide some understanding of concrete situations, but it leads to create exotic curves
beyond what is usually presented in courses. The regular usage of modelling appears in the left part
of Figure 18 (Source: [8]), we went more towards the right part.

Finally, we wish to mention that Duval [16, 17] explained that in opposition to other scientific
domains, where the objects of study are present on the table or graspable, mathematical objects are
abstract and can be studied only via representations, that he classifies into registers. Switching be-
tween registers enable to master the object. We did it between numerical, symbolic and graphical
registers. In [13], a new register is proposed, namely 3D printed objects, which are really graspable.
Their pros and cons are discussed there, such as the necessity to thicken the curve to have them 3d
printed. This register is beyond the scope of the present paper.

Interactive exploration is intended to educate students to be active and more involved in their
learning process than with the traditional segment definition-theorem-proof. The teacher is a mentor

8As we mentioned initially that we have been inspired by news from the space exploration, we cannot omit to recall
that one of the NASA robots on Mars is called Curiosity.
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Figure 18: Modelling and creativity

and is here to facilitate the exploration, to help to understand, not to convey knowledge ex-cathedra.
Nowadays, starting from real examples, taken from everyday life, from the students’ culture, or from
the news, not only motivates them to learn here and now, but also may improve their preparation for
professional life and long life learning.

7 Supplementary Electronic Material
[S1] A GeoGebra applet for tricircular motion, in Section 2.
[S2] A GeoGebra applet for tricircular motion, one object moving in retrograde direction, in

section 3.
[S3] A GeoGebra applet for a lunar polar orbit, in subsection 4.1.
[S4] A GeoGebra applet for a lunar polar orbit, in section 5.2
[S5] A GeoGebra applet to check 5-fold symmetry of a trajectory, in section 3.3.
[S6] A Maple worksheet for implicitization, in subsection 5.1.
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Abstract

What is a transcendental function? Whether they realize it or not, most students are quite famil-
iar with these functions. In this paper, we first seek to unravel and explain the terms ”algebraic”
and ”transcendental” in the context of numbers and then in the context of functions. We then prove
some basic results establishing that exponential, logarithmic, trigonometric, and inverse trigonomet-
ric functions are transcendental. We also briefly discuss the nature of an “elementary function.”. The
paper concludes with a series of reader investigations exploring these concepts in a computer algebra
system such as Maple.

1 Why Ponder the Transcendental?
There are many types of functions, including polynomial, rational, algebraic, transcendental, and ele-
mentary functions (many of which seem far from elementary). We deal with these kinds of functions
every day in ordinary algebra and calculus courses. In terms of symbolic manipulation, there is a sizable
gulf between algebraic (e.g.,

√
x) and transcendental (e.g., ex) functions. Given the ubiquity of such

functions, it seems wise to understand what makes them different and how they arise. Paralleling opera-
tional closures leading to the development of various familiar number systems, we seek to elucidate such
collections of functions and indicate how they arise when seeking various forms of closure.

We begin this discussion with a figure that sums up the culmination of our investigation. Here we
show nested collections function types with some indications of the kinds of closures these systems pos-
sess. This is intended to motivate interest among readers who may wish to visually organize polynomial,
rational, transcendental, elementary, and others into subset and superset relationships based on notions of

The Research Journal of Mathematics and Technology, Volume 14, Number 1 

Page 93 of 133

mailto:bauldrywc@gmail.com
mailto:bossemj@appstate.edu
mailto:cookwj@appstate.edu


closure. We hope this diagrammatic representation will encourage others to investigate a hierarchical re-
lationship among these functions. Notably, this document’s contents will explain much of the symbolism
in the diagram.

Functions

Elementary Functions
(Closed: ±, ×, ÷, poly. roots (e.g., n

√
), exp., log., diff.)

Algebriac Functions
(Closed: ±, ×, ÷, poly. roots (e.g., n

√
, diff.))

Ex: 3

√
5x2+

√
x

7x−2 , (
√
x+ 5)9/5

Transcendental Functions

Ex: sin
(

ln(x10+1) + 1
3
√
x

)
, earctan(x+2) Ex:

∫
ex

2

dx,
∫ sin(x)

x dx

Rational Functions: C(x)
(Closed: ±, ×, ÷, diff.)

Ex: 1
x2+1 , 9x7−3x+4

−x2+
√
11

Polynomials: C[x]
(Closed: ±, ×, diff.)
Ex:
√

3x5+x3−2x+1, πx+e4

2 A Numerical Preamble
Before diving into the world of functions, we seek to gain a concrete sense of algebraic versus transcen-
dental in the context of familiar number systems. For a more detailed exploration of various number
systems, we recommend [2].

2.1 Number Systems and Operational Closure
The story of number systems can be viewed through the lens of various closures. We understand that the
natural numbers (i.e., positive integers), N = {1, 2, 3, 4, . . . }, are closed under addition and multiplica-
tion and include the multiplicative identity. If we wish to include the additive identity, we must consider
the whole numbers (i.e., non-negative integers), W = {0, 1, 2, 3, 4, . . . }. Suppose we wish to include
closure for subtraction. We must then step up to the integers, Z = {. . . ,−2,−1, 0, 1, 2, . . . }, which
include additive inverses.1 Demanding closure under division (as always, except by zero) leads us to the
rational numbers, Q = {a

b
| a, b ∈ Z and b ̸= 0}, which include multiplicative inverses.

1For those with some abstract algebra background, in this paper, we will only consider rings with characteristic zero (i.e.,
repeatedly adding a non-zero element to itself will never yield zero). Every such ring (with multiplicative identity) contains
an isomorphic copy of the integers (its prime subring) and thus gives us a natural starting point.
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While this might seem like the end of the road, the rational numbers (Q) are not closed under root
taking (e.g.,

√
2 ̸∈ Q) as well as many other operations. This leads to the need for additional number

systems such as the real numbers (R), the real irrational numbers (I), the algebraic numbers (A), and
complex numbers (C). A nesting of some number systems is provided in the following figure.

Complex Numbers: C
(Closed: ±, ×, ÷, poly. roots (e.g., n

√
), exp., logs.)

Algebriac Numbers: A
(Closed: ±, ×, ÷, poly. roots (e.g., n

√
))

Ex:
√
5i, 1+6i

13

Transcendental Numbers

Ex: ln(2) +
√
7i, πi

Real Numbers: R
(Closed: ±, ×, ÷, n

√
r for r > 0, exp., logs.)

(Real) Irrational Numbers: I
Ex: 3

√
123
45 , 39/5 Ex: π, e

Rational Numbers: Q
(Closed: ±, ×, ÷)
Ex: 11

7 , - 4
13

Integers: Z
(Closed: ±, ×)
Ex: . . . ,−2,−1, 0, 1, 2, . . .
Natural Numbers: N
(Closed: +, ×)
Ex: 1, 2, 3 . . .

2.2 Caressing (Lightly Touching) Algebraic Structures
We recall names for systems with various closure properties. Without giving all the formal details (see
[4]), a commutative ring (with unity) is a non-empty collection equipped with operations of addition,
subtraction, and multiplication. A good example of such is the integers (Z). If we also want division
(except by zero), we have a system called a field. The rational numbers (Q), real numbers (R), and
complex numbers (C) should be familiar examples of fields.

The real numbers include irrational numbers like
√
2 and 3

√
5 but also wilder numbers such as π ≈

3.14159265 and e ≈ 2.7182818. The real numbers are not only closed under root taking (for non-negative
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real numbers) but also closed under a kind of limiting. In fact, one can characterize the real numbers as
being the only ordered field closed under taking greatest lower bounds and least upper bounds (i.e., it the
the only complete ordered field up to order preserving isomorphism [5]).

2.3 Wildly Irrational Numbers
Two considerations arise from the above discussion. First, what about roots of negative numbers? If
we demand root taking for all numbers, we must introduce i where i2 = −1 (i.e., the imaginary root).2

Gauss, in his dissertation, was able to prove that the complex numbers are algebraically closed [8]. This
means that C is not only closed under addition, subtraction, multiplication, division, and root taking but
also under extracting roots of any polynomial relation.

Second, what exactly makes π wilder than
√
2? This concern is essentially the main consideration of

this paper. The difference between π and
√
2 is that π transcends algebraic (i.e., polynomial) relationships

among rational numbers, whereas
√
2 satisfies such a relation (e.g., (

√
2)2 = 2). In particular, we define

the notion of an algebraic number:

Definition 2.1 A complex number z ∈ C is algebraic if there are rational numbers an, . . . , a0 ∈ Q, not
all zero, such that anzn + · · · + a1z + a0 = 0. In other words, a number is algebraic if it is the root
of a non-zero polynomial with rational coefficients. In contrast, any number that fails to be algebraic is
called transcendental.

After briefly considering the above definition, it should be apparent why showing a number to be
algebraic is often pretty easy. For example, 3

√
5 is algebraic because it is a root of x3 − 5 (end of proof).

On the other hand, showing a number is transcendental is almost always very challenging – challenging
but not impossible. In 1873, Charles Hermite showed that Euler’s number e is transcendental, and in
1882, Ferdinand von Lindemann proved that π is transcendental [3]. To explore a large collection of
transcendental numbers with patterned decimal expansion, see [1]. It should be noted that algebraic
numbers are not always easily recognized. For example, cos(π

9
) is algebraic since it is a root of the cubic

polynomial 8x3 − 6x− 1, but this is not exactly obvious.

2.4 Planting Some Ideas
This section comes with the following disclaimer: Here, we provide an overview of ideas that will be
addressed in more detail in future sections. While we acknowledge the immediate topical jump in com-
plexity, we ask the reader to persevere and trust that explanations are coming.

2We eschew the notation
√
−1 for the imaginary root i. Why? For example,

√
4 denotes the non-negative number that

squares to be 4. Thus
√
4 = 2. If we just carelessly state that

√
4 is the number that squares to 4, we are left with ambiguity

for both ±2 accomplish this. Now if one writes
√
−1, then this should be the positive number that squares to be −1. However,

there is no way to linearly order the complex numbers in a way compatible with their arithmetic, so neither ±i can be
considered positive. Another reason to avoid this notation is that it misleads one into making fallacious arguments such as:
−1 = (

√
−1)2 =

√
(−1)2 =

√
1 = 1.
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One must be careful about the general notions of algebraic and transcendental. They are defined
relative to some base system. When someone refers to algebraic or transcendental numbers without
mentioning a base system, they typically mean they are working over the rational numbers (Q).

More generally, if K is a field3 containing another field F (i.e., K is an extension field of F, or
equivalently F is a subfield of K), then we say an element α ∈ K is algebraic over F if it is a root of some
nonzero polynomial with coefficients in F: cnαn + · · ·+ c1α+ c0 = 0 for some cn, . . . , c1, c0 ∈ F where
not all ci’s are zero. Any element α ∈ K which fails to be algebraic over F is said to be transcendental
over F. This means that while an algebraic element in K might not belong to F, it is not too far away in
terms of algebraic entanglements. In contrast, a transcendental element has no algebraic relationship (in
terms of adding, subtracting, multiplying, dividing) to the base system!

We emphasize that the base system matters. Notice that while π is transcendental over Q, it is alge-
braic over R since π is the root of x−π (a polynomial whose coefficients 1 and −π belong to R). In fact,
working over R, every element of C is algebraic, whereas working over Q, most of the elements of C are
transcendental.4 Trivially, if c ∈ F, then c is the root of x − c whose coefficients (i.e., 1 and −c) belong
to F. Thus, unsurprisingly, every element of F is algebraic over F itself.

3 A Brief Account of Some Mathematical Field Theory
We note that algebraic numbers possess some closure properties. Consider some field K extending an-
other field F with α, β ∈ K. If α and β are algebraic over F, then so are α+ β, α− β, α · β, and α/β (if
β ̸= 0). In fact, roots of algebraic numbers are still algebraic. Loosely speaking, doing algebraic stuff to
algebraic elements yields algebraic elements (working over some fixed base field F). For example, since√
2 and 3

√
5 are algebraic (over Q), we have

√
2− 3

√
5 and 9

√
3
√
5 + 123

√
2 are algebraic as well.5

Let us briefly explain why the statements above hold and simultaneously introduce some useful no-
tation and concepts. In linear algebra, we learn that a vector space is a collection of elements equipped
with a (vector) addition and scalar multiplication. Introductory courses generally restrict scalars to the
fields of real (R) or sometimes complex (C) numbers. However, one can work more generally with any
field F as their field of scalars. Notably, a vector space V working over a field of scalars F always has a
basis, and any two bases have the same number of elements. This common size of a basis is called the
dimension of the vector space and is often denoted dimF(V ) (or leaving out the F subscript if our field
of scalars is understood). For example, dimF(F3) = 3 if F3 denotes ordered triples with entries in F. For
example, we could use {(1, 0, 0), (0, 1, 0), (0, 0, 1)} (a set of 3 elements) as a basis.

Given a field K extending a field F, we can view K as a vector space with scalars in F (we certainly

3Recall that a field is an abstract system closed under addition, subtraction, multiplication, and division.
4Given z = a+bi ∈ C where a, b ∈ R, we have (x−z)(x−z) = (x−a−bi)(x−a+bi) = x2−2ax+(a2+b2) is a real

polynomial where z is a root. Thus z is algebraic over R. On the other hand, one can show that there are only countably many
algebraic numbers, whereas there are uncountably many real and complex numbers. Thus “most” of these numbers must be
transcendental.

5Good luck guessing a rational polynomial with such roots! There are algorithms that do this. Computer algebra systems
such as Maple can find such polynomials for us if we would like.
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can add elements of K and multiply elements of K by elements of F). In mathematical field theory, one
defines [K : F] = dimF(K) to be the degree of the extension of K working over F. In other words, the
degree of an extension is the dimension of that field viewed as a vector space over the base field. For
example, every complex number can be uniquely expressed as a + bi where a, b ∈ R. This means {1, i}
is a basis for C viewed as a real vector space and so [C : R] = 2. On the other hand, [C : C] = 1 (it is
always true that [F : F] = 1) and [C : Q] is infinite.6

We need some notations for extending a number system to a larger one. First, given a commutative
ring (with multiplicative identity) R, the notation R[t] denotes the smallest ring accommodating all of R
and the “new” element t. A general element of R[t] looks like cntn+· · ·+c1t+c0 where cn, . . . , c1, c0 ∈ R
(i.e., a general element is a polynomial in t with coefficients drawn from R). Next, R(t) denotes the
smallest ring accommodating all of R and the new element t and its multiplicative inverse 1/t. A general
element in R(t) looks like f(t)/g(t) where f(t) and g(t) are elements of R[t] (with g(t) ̸= 0). In other
words, these are rational functions in t with coefficients in R. If R is a field, then R(t) is the smallest
field containing all of R as well as t. For example, since even powers of

√
2 are of the form 2k and odd

powers of
√
2 are of the form 2k

√
2, it turns out that elements of Q[

√
2] are of the form a+ b

√
2 for some

a, b ∈ Q. Moreover, by the conjugate trick we learned in our youth,

a+ b
√
2

c+ d
√
2
=

a+ b
√
2

c+ d
√
2
· c− d

√
2

c− d
√
2
=

ac− 2bd

c2 − 2d2
+

−ad+ bc

c2 − 2d2

√
2,

ratios of elements in Q[
√
2] are still elements in Q[

√
2]. Thus Q(

√
2) = Q[

√
2]. Similarly, C = R[i] =

R(i). When x is an indeterminate, R[x] simply denotes the ring of polynomials with coefficients in R

and R(x) denotes rational functions with coefficients in R. For example,
πx2 −

√
3

−x3 + 5x+ 5
√
11

belongs to

the field of real rational functions, R(x).

3.1 Algebraic and Transcendental Elements
Now, we return to algebraic versus transcendental elements. Using our new notation: Given a field K
extending a field F, recall that α ∈ K is algebraic over F if f(α) = 0 for some nonzero polynomial
f(x) ∈ F[x]. It is useful to collect all polynomials with root α together into a collection (called an ideal).
Indeed, given any algebraic (over F) element α, there is a unique monic (i.e., its leading coefficient is 1)
polynomial m(x) ∈ F[x] of lowest degree such that m(α) = 0. Such a polynomial is irreducible in F[x]
(i.e., it does not factor in a non-trivial way in F[x]), and if f(x) ∈ F[x] is such that f(α) = 0, then f(x)
is a multiple of m(x). We call m(x) the minimal polynomial of α. For example, x2 − 2 is the minimal
polynomial of

√
2 working over Q. Notice that

√
2 is also a root of x4−4. So, x4−4 = (x2+2)(x2−2)

is a multiple of x2 − 2. Once again, the base field matters. The minimal polynomial of
√
2 working over

R is just x−
√
2. Notice that x2 − 2 = (x+

√
2)(x−

√
2) factors over R but not over Q.

When α is algebraic over F, F[α] is always a field (i.e., F[α] = F(α)) and [F[α] : F] is precisely the
degree of α’s minimal polynomial. For example, since every element of Q[

√
2] can be uniquely written

6Technically [C : Q] = 2ℵ0 = c since C requires a basis of continuum cardinality when working over the rationals.
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as a + b
√
2 for some a, b ∈ Q, we have that {1,

√
2} is a basis for Q[

√
2] (as a vector space over Q), so

[Q[
√
2] : Q] = dimQ(Q[

√
2]) = 2. Alternatively, we see that [Q[

√
2] : Q] = deg(x2 − 2) = 2.

On the other hand, if α is transcendental over F, our element α behaves like an indeterminate. In
this case, F[α] is always a proper subset of F(α). Also, both [F[α] : F] and [F(α) : F] are infinite.7 For
example, Q[π] behaves just like the ring of polynomials with rational coefficients, Q[x]. Putting this all
together, α is algebraic over F if and only if F[α] = F(α) if and only if [F[α] : F] is finite where the
degree of this extension is precisely the degree of our algebraic element’s minimal polynomial. On the
other hand, α is transcendental over F if and only if F[α] ⊊ F(α) if and only if [F[α] : F] is infinite.

If the degree [K : F] is finite, then we say K is a finite extension of F. The above paragraph tells us
that F[α] is a finite extension of F exactly when α is algebraic over F. One can easily show if K is a finite
(degree) extension of F, then all the elements of K are algebraic over F. The converse is not true. It is
possible to have an infinite (degree) extension containing only algebraic elements.

The degree formula is an important tool when working with these concepts. It states that given a field
L extending a field K which in turn extends a field F, we have

[L : F] = [L : K] · [K : F].
Consequently, finite extensions of finite extensions are still finite extensions. This also implies that if α
is algebraic over K and K is an algebraic extension of F, then α is algebraic over F. For example, Q[ 3

√
5]

is algebraic over Q since [Q[ 3
√
5] : Q] = deg(x3 − 5) = 3 is finite. Notice that

√
1 + 3

√
5 is a root of

x2 − (1 + 3
√
5) ∈ (Q[ 3

√
5])[x]. Thus

√
1 + 3

√
5 is algebraic over Q[ 3

√
5] and thus also algebraic over Q.

All algebraic elements in a field K (working over a base field F) collected together form a field (a
subfield of K and an extension field of F). In other words, adding, subtracting, multiplying, and dividing
(except by zero) algebraic elements yields an algebraic element. Therefore, if t is transcendental and
a ̸= 0 is algebraic, then a · t must be transcendental (otherwise t = (a · t) · 1

a
is a product of algebraic

elements and thus algebraic). Likewise, if t is transcendental and a is algebraic, then t+a is transcendental
(otherwise, t = (t + a) + (−a) is the sum of algebraic elements and thus algebraic). This means that
numbers like

√
2 + π and 51/3 · e are transcendental (over Q).

4 Fields of Functions
Recall that when someone says a real or complex number is algebraic (respectively transcendental) with-
out referencing a base field, we understand that they mean it is algebraic (respectively transcendental)
over the rational numbers (Q). When we move the realm of functions, we let our default base field be the
field of rational functions with complex coefficients.

Definition 4.1 We let x denote an indeterminate (essentially our real or complex variable) and then
C(x) =

{
f(x)
g(x)

∣∣∣ f(x), g(x) ∈ C[x] and g(x) ̸= 0
}

is the field of rational polynomials with complex coef-
ficients. Given a complex function h(x), we say h(x) is algebraic (respectively transcendental) if it is
algebraic (respectively transcendental) over C(x).

7More precisely, both [F[α] : F] and [F(α) : F] are ℵ0 (countably infinite dimensional).
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Why is C(x) a natural base field? To explain this, we first note why Q was a natural base field for
numbers. We noted that if we want a system possessing the number 1 with closures under addition,
subtraction, and multiplication, we must include all of the integers (Z). If we also demand closure under
division (except by zero), we must include all rational numbers (Q). For functions, we wish to start off
with all “numbers” (i.e., constant functions), and so C is a starting point. We should also include the so-
called identity function f(x) = x. If we wish to accommodate all constants (C), the identity function, and
also require closures under addition, subtraction, and multiplication, then we must include all complex
coefficient polynomials (C[x]). If we also demand closure under division (except by zero), we are forced
to include all complex coefficient rational functions (C(x)).8

Since x is now playing the role of our variable, we will use a different symbol, Y , as our indetermi-
nate when referring to polynomial relations. We restate our main definition: we have h(x) is an alge-
braic (complex or real) function if there exists some non-zero polynomial m(Y ) ∈ (C(x))[Y ] such that
m(h(x)) = 0. In other words, we have fn(x)

gn(x)
(h(x))n+ · · ·+ f1(x)

g1(x)
h(x)+ f0(x)

g0(x)
= 0 for some complex poly-

nomials fn(x), . . . , f1(x), f0(x), gn(x), . . . , g1(x), g0(x) ∈ C[x] where gi(x) ̸= 0 for all i = 0, 1, . . . , n
and at least one fj(x) ̸= 0.

To make life easier we notice that we could clear the denominators in our above relation and get the
equivalent definition: h(x) is an algebraic function if there exists complex polynomials cn(x), . . . , c1(x),
c0(x) ∈ C[x] (not all zero) such that cn(x)(h(x))n + · · ·+ c1(x)h(x) + c0(x) = 0. In other words, h(x)
is an algebraic function if and only if it is a root of some non-zero polynomial with complex polynomial
coefficients: C(Y ) = cn(x)Y

n+· · ·+c1(x)Y +c0(x) ∈ (C[x])[Y ]. For example, the square root function
h(x) =

√
x is algebraic. Notice (

√
x)2 − x = x− x = 0. In particular, we have h(x) =

√
x is a root of

the non-zero polynomial C(Y ) = Y 2 − x ∈ (C[x])[Y ].
Building on our previous discussion about how collections of algebraic elements are closed under

algebraic operations such as addition, subtraction, multiplication, division, and root taking, we should

not be surprised to learn that functions such as h(x) = 5

√
x3 −√

x
3
√
x2 + 1− 11

are algebraic.9

4.1 Transcendental Functions
The main goal of this paper is to demonstrate that many familiar functions are transcendental. Interest-
ingly, even though proving numbers such as π and e are transcendental (over Q) is rather intricate and
challenging (see [3]), proving trigonometric, exponential, and logarithmic functions are transcendental is
rather elementary. We rely on the following simple theorem:

8Since we aim to study the algebraic versus the transcendental, we sweep issues of domain and analysis under the rug.
Considering function domains, branch cuts, and polynomial functions versus formal polynomials would take us too far afield.
The careful reader should be comforted to know that (when working in characteristic 0) there is algebraically essentially no
difference between polynomial functions (treating x as a variable) versus the formal polynomials (treating x as an indetermi-
nate).

9See §6 Reader Investigations #5.
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Theorem 4.2 Just like polynomial functions, the zero function is the only algebraic function with in-
finitely many zeros.

Proof: Suppose h(x) is algebraic. Therefore, there exists a non-zero polynomial C(Y ) ∈ (C[x])[Y ] such
that C(h(x)) = 0, say C(Y ) = cn(x)Y

n + · · · + c1(x)Y + c0(x) where cn(x), . . . , c1(x), c0(x) ∈ C(x)
and at least one cj(x) ̸= 0. Without loss of generality, we may assume cn(x) ̸= 0. Next, consider the
greatest common divisor (GCD) of the coefficients of the powers of Y in C(Y ), say d(x) is the GCD of
the polynomials cn(x), . . . , c1(x), c0(x). Then, 1

d(x)
C(Y ) is still a non-zero element of (C[x])[Y ] with

root h(x). Thus, without loss of generality, we also assume that the GCD of cn(x), . . . , c1(x), c0(x) is 1.
Next, suppose that h(x) has infinitely many zeros, say z1, z2, . . . are distinct complex numbers such

that h(z1) = h(z2) = · · · = 0. We can take our polynomial relation 0 = C(h(x)) = cn(x)(h(x))
n +

· · · + c1(x)h(x) + c0(x) and evaluate it at any of these numbers. For any k = 1, 2, . . . , we get 0 =
C(h(zk)) = cn(zk)(h(zk))

n+ · · ·+c1(zk)h(zk)+c0(zk) = cn(zk) ·0+ · · ·+c1(zk) ·0+c0(zk). Therefore,
c0(zk) = 0 for all k = 1, 2, . . . so that c0(x) is a complex polynomial with infinitely many roots. Thus
c0(x) = 0 (i.e., c0(x) is the zero polynomial). We now have C(Y ) = cn(x)Y

n + · · · + c1(x)Y + 0 =
(cn(x)Y

n−1 + · · ·+ c1(x))Y . Let D(Y ) = C(Y )/Y = cn(x)Y
n−1 + · · ·+ c1(x). Either h(x) is a root of

D(Y ) or h(x) is a root of Y . The latter would mean h(x) = 0 (and so we are done). Otherwise, we have
h(x) is the root of a polynomial (in Y ) of one degree less: D(Y ) = cn(x)Y

n−1 + · · · + c1(x). Since the
GCD of cn(x), . . . , c1(x), c0(x) = 0 is 1, the GCD of cn(x), . . . , c1(x) is still 1. Thus, D(Y ) satisfies the
same criterion as C(Y ) did but is of one degree lower.

Continuing in this fashion, we eventually must have that h(x) is a root of P (Y )Y where P (Y ) is a
polynomial in (C[x])[Y ] of degree zero whose coefficients have a GCD of 1. In other words, h(x) is the
root of p0(x)Y for some p0(x) ∈ C[x] where the GCD p0(x) (by itself) is 1. Thus, p0(x) is a (non-zero)
constant polynomial. Without loss of generality, we may assume p(x) = 1. Thus, h(x) is a root of Y .
Therefore, we cannot escape that h(x) must be identically 0. ♦

Armed with the above theorem, we can easily get that many familiar functions are transcendental
functions.

Corollary 4.3 Any non-constant periodic function is transcendental.

Proof: Essentially any non-constant periodic function appropriately shifted by a constant yields a non-
constant function with infinitely many zeros and thus must be transcendental by our theorem above.

In more detail, suppose f(x) is non-constant and periodic with some period p. In other words,
f(z) = f(z+p) = f(z+2p) = · · · = f(z+np) for any z in the domain of f(x) and integer n ∈ Z. Pick
some z0 in f(x)’s domain and define c = f(z0). Then the function h(x) = f(x)− c has infinitely many
zeros since given zk = z0 + pk for k ∈ Z, we have h(zk) = f(z0 + pk) − c = f(z0) − c = c − c = 0.
Also, since f(x) is non-constant, h(x) = f(x) − c ̸= 0. Thus, h(x) is transcendental, and so f(x) must
be as well. ♦

All of our familiar trigonometric and exponential functions are periodic – at least when working over
the complex numbers.
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Corollary 4.4 The trigonometric functions: sin(x), cos(x), tan(x), sec(x), csc(x), cot(x), the hyper-
bolic trigonometric functions: sinh(x), cosh(x), tanh(x), sech(x), csch(x), coth(x), and the exponential
function ex are all transcendental.

Proof: The trigonometric functions have periods 2π or π. The hyperbolic trigonometric functions and
the exponential function have periods 2πi or πi. ♦

This also allows us to see that bx is transcendental for any fixed base b > 0 (and b ̸= 1).10 Next, we
could ask about inverse functions. Here, we have a very clear answer.

As a note, we have been fairly careless about considering domains of functions. Since the notion of
being algebraic versus transcendental is about satisfying polynomial relations in an indeterminate, we
should see that the specific domains of definition are not really that consequential. Along these lines, we
refer to “an” inverse. Technically, we are referring to some branch of an otherwise multivalued inverse.
This is in step with a typical Calculus sequence level treatment of functions. For example, when working
over the real numbers, we refer to

√
x as the inverse of x2, but in reality we have two potential branches:√

x and −√
x. Likewise, we refer to arcsin(x) as the inverse of the sine function, but this is just one of

infinitely many possible branches of sine’s “inverse”. Working in the context of the complex numbers
muddies these waters even more. Again, we sweep such issues under the rug and focus on algebraic
relations. We will call h−1(x) an inverse of h(x) if h(h−1(x)) = x for any x where the composition is
defined.

Proposition 4.5 An inverse of an algebraic function is algebraic. Therefore, an inverse of a transcen-
dental function is transcendental.

Proof: Let h(x) be algebraic with inverse h−1(x) (i.e., h(h−1(x)) = x). Since h(x) is algebraic, we have
h(x) is the root of some non-zero polynomial C(Y ) = cn(x)Y

n + · · · + c1(x)Y + c0(x) ∈ (C[x])[Y ].
We can expand each coefficient cj(x) = bmjjx

mj + · · ·+ b1jx+ b0j . Expanding out our polynomial and
thinking about it as a polynomial in both Y and x, we have B(x, Y ) =

∑
i,j

bijx
iY j .

We have that B(x, h(x)) =
∑

i,j bijx
i(h(x))j =

∑
j bj(x)(h(x))

j = 0. We now make the sub-
stitution x = h−1(t) (using a different variable t for clarity) so that h(x) = h(h−1(t)) = t. Thus,
0 = B(x, h(x)) = B(h−1(t), t) =

∑
i,j bij(h

−1(t))itj .
Briefly, we have B(x, h(x)) = 0 implies B(h−1(x), x) = 0. In other words, Y = h−1(x) is a root of

the non-zero polynomial B(Y, x) =
∑
k,ℓ

cℓkx
kY ℓ ∈ (C[x])[Y ]. Thus h−1(x) is algebraic.

Next, if h−1(x) is algebraic, then (h−1)−1(x) = h(x) must be algebraic too. Therefore, either both
h(x) and h−1(x) are algebraic, or neither are (i.e., either both are algebraic or both are transcendental). ♦

To illustrate the above theorem, consider
√
x is a root of Y 2 − x, and so its inverse x2 should be a

root of x2 − Y (which it is).
10Notice bx = ex ln(b) = ex ln(b)+2πi = e(x+2πi/ ln(b)) ln(b) = bx+2πi/ ln(b), so these (non-constant) functions have period

2πi/ ln(b).
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Corollary 4.6 Inverse trigonometric functions: arcsin(x), arccos(x), arctan(x), arcsec(x), arccsc(x),
arccot(x), inverse hyperbolic trigonometric functions: arcsinh(x), arccosh(x), arctanh(x), arcsech(x),
arccsch(x), arccoth(x), and logarithm functions: ln(x) (as well as logb(x) for positive base b ̸= 1) are
transcendental.

5 Differential Algebra
Working with complex functions opens a door to consider yet another kind of closure. We might ask
if we have closure under derivatives. Notice that the derivative of a polynomial (respectively a rational
function) is still a polynomial (respectively a rational function). Thus both C[x] and C(x) are closed
under differentiation. How about algebraic and transcendental functions?

Proposition 5.1 The derivative of an algebraic function is an algebraic function.

Proof: Let h(x) be an algebraic function. In particular, suppose h(x) is a root of C(Y ) = cn(x)Y
n +

· · ·+c1(x)Y +c0(x) where cn(x), . . . , c1(x), c0(x) ∈ C[x]. Also, assume C(Y ) is a non-zero polynomial
of lowest possible degree (i.e., it is a C[x]-multiple of the minimal polynomial of h(x)).

We can use the product, power, and chain rules to help differentiate the relation 0 = C(h(x)) and get

0 = c′n(x)(h(x))
n + cn(x)n(h(x))

n−1h′(x) + · · ·+ c′1(x)h(x) + c1(x)h
′(x) + c′0(x).

Therefore, −(c′n(x)(h(x))
n + · · · + c′1(x)h(x) + c′0(x)) = (ncn(x)(h(x))

n−1 + · · · + c1(x))h
′(x). We

note that C(Y ) had minimal degree such that h(x) was a root, so ncn(x)(h(x))
n−1 + · · ·+ c1(x) cannot

be identically zero. Therefore, we can solve for h′(x):

h′(x) = −c′n(x)(h(x))
n + · · ·+ c′1(x)h(x) + c′0(x)

ncn(x)(h(x))n−1 + · · ·+ c1(x)
.

Finally, notice that h(x) and polynomials (c′n(x) and ncn(x) etc.) are algebraic. Also, algebraic functions
form a field (i.e., closed under adding, subtracting, multiplying, and dividing by non-zero elements).
Therefore, h′(x) must be algebraic too. ♦

We note that the above proof not only shows the derivative of an algebraic function must be algebraic,
but it also gives a formula for its derivative in terms of our algebraic function’s minimal polynomial. For

example, h(x) =
√
x satisfies Y 2−x. Thus, h′(x) = −0(h(x))2 − 1

2h(x)
=

1

2
√
x

as we know from Calculus.

In contrast to algebraic functions, transcendental functions are not closed under differentiation. For

example, we already know that arctan(x) is transcendental. However, its derivative,
1

1 + x2
, is algebraic.

On the other hand, sometimes derivatives of transcendental functions do remain transcendental. For
example, sin(x) is transcendental, as is its derivative cos(x).
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From the results above and our experiences in Calculus, we are led to believe that differentiation leads
us from more complicated functions to simpler ones. From an analytic perspective, this is definitely not
the case!11 However, from a symbolic perspective, there is some truth. Differentiation moves us from
more exotic to less exotic collections. Repeatedly differentiating polynomials eventually yields constants
and then zero. Differentiating our inverse trigonometric and log functions yields rational functions or
square roots of rational functions.

5.1 Elementary Functions
In Calculus, we want access to certain algebraic and exponential, logarithmic, and trigonometric func-
tions. Functions built from these pieces are referred to as elementary functions. First, we note that
trigonometric and inverse trigonometric functions are redundant when working in the world of complex
variables. For example, sin(x) = 1

2i
(eix− e−ix) and arcsin(x) = −i ln(ix+

√
1− x2). Thus, up to some

algebraic stuff, we can just consider exponentials and logarithms.
One more carefully defines an elementary function to be a function obtained by finitely many steps

of exponentiating, taking a logarithm, and extracting a root of a polynomial. For example,

h(x) =

√
e

3√x5+1 + x10 − 1

ln(x3 +
√
x9 − 4) + x3 + ln(e1/x + 11)

is an elementary function.
One can show that while elementary functions are closed under our usual algebraic operations and

differentiation, they are not closed under anti-differentiation (i.e., integration). For example,
∫
ex

2
dx and∫ sin(x)

x
dx are not elementary functions [7]. A special part of the study of Differential Algebra known

as Differential Galois Theory gives a more complete picture of how all of these things fit together. For
example, Andy Magid [6] tells us that elementary functions are exactly those that live in an abelian
differential field extension of C(x). Without explaining exactly what this means, we assure the reader
that elementary functions (as non-elementary as they might seem) are a mathematically natural collection
of functions for one to consider when working in a field of study such as Calculus.

6 Reader Investigations
The following is a set of investigatory exercises that use the computer algebra system Maple™. These
problems can be easily modified for other computer algebra systems such as TI Nspire™, Sage, Pocket-
CAS™, Mathematica™, or Wolfram Alpha™. A Maple™worksheet containing these investigations can
be found at: https://BillCookMath.com/papers/Transcendental-Investigations.mw

1. We’ll use Maple to explore some minimal polynomials for simple radicals. Start with:
> MP := PolynomialTools:-MinimalPolynomial:

11Differentiation destroys. Integration smooths.
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> p3 := MP(
√
3, x);

p3 := x2 − 3
> p5 := MP(

√
5, x);

p5 := x2 − 5
Now try:
> p3p5 := expand(p3·p5);

p3p5 := x4 − 8x2 + 15
> p15 := MP(

√
15, x);

p15 := x2 − 15
> solve(p3p5); √

3,−
√
3,
√
5,−

√
5

> solve(p15); √
15,−

√
15

Explain how combining the radicals affects the minimal polynomials and their roots.

Let’s try:
> MP(

√
3 +

√
5, x);

solve(%);
x4 − 16x2 + 4√

5−
√
3,−

√
5 +

√
3,
√
3 +

√
5,−

√
3−

√
5

> p3 + p5;
solve(%);

2x2 − 8
2,−2

What can we conclude about the minimal polynomials of combinations of radicals?

2. Let’s consider a different combination of simple radicals. What does the following sequence of
commands tell us?
> MP := PolynomialTools:-MinimalPolynomial;
> r2 := 21/2;
> r8 := 81/2;
> minpolyr2 := MP(r2, x);
> minpolyr8 := MP(r8, x);
> roots2 := solve(minpolyr2);
> roots8 := solve(minpolyr8);

3. Investigate minimal polynomials of constants and of simple polynomials using the interactive
Maple document “Exploring Simple Minimal Polynomials” hosted on the Maple.cloud.

4. A minimal polynomial can be viewed as a level curve of a surface.
Execute the following in Maple.
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> with(plots):
> plotOpts := (style = surfacecontour, shading = XY, transparency = 0.5, thickness = 5):
> p2 := (x, Y) → Y 2 - x;
> plot3d(p2(x, Y), x = -3 .. 3, Y = -3 .. 3, plotOpts, contours = [1]);
> display(%, orientation = [-90, 0, 0], axes = normal);
What can we conclude from the graphs?

> p3 := (x, Y) → Y 3 - x;
> plot3d(p3(x, Y), x = -3 .. 3, Y = -3 .. 3, plotOpts, contours = [1]);
> display(%, orientation = [-90, 0, 0], axes = normal);
What can we conclude from this pair of graphs?

Now interpret the result of:
> p31 := (x, Y) → 5 · Y 3 − 3 · Y · x;
> plot3d(p31(x, Y), x = -3 .. 3, Y = -3 .. 3, plotOpts, contours = [1]);
> display(%, orientation = [-90, 0, 0], axes = normal);
Identify the common feature from all of these graphs?

5. Do the following Maple commands verify that the function

h(x) = 5

√
x3 −√

x
3
√
x2 + 1− 11

given at the end of §4’s introduction is algebraic or do they show that h(x) is actually transcenden-
tal?
> mp := evala@Minpoly:
> h := x → ((x3 − x1/2)/((x2 + 1)1/3 − 11))1/5;
> Ph := mp(h(x), Y);
> subs(Y = h(x), Ph);
> radsimp(%);

6. Showing the negative result “There is no polynomial such that...” is very difficult. Execute:
> mp := evala@Minpoly:
> Psin := mp(sin(x), Y);

(a) Is f(x) = sin(x) algebraic or transcendental? Explain your response.

(b) What does this result tell us about the capabilities of Maple’s Minpoly command?

7. Let’s look at nesting roots and what happens to the minimal polynomials. Execute the following in
Maple:
> mp := evala@Minpoly:
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> r1 :=
√
2;

> for i from 2 to 4 do r||i := sqrt(2 + r||(i− 1)) end do;
Now compute the minimal polynomials and then find the roots.
> for i to 4 do p||i := mp(r||i, Y ) end do;
> for i to 4 do [solve(p||i = 0, Y )] end do;

(a) Do you see any patterns in the minimal polynomials?

(b) Do the polynomials share any common roots?

8. Proposition 4.5 concerns the inverse of an algebraic function. Define the function g(x) = x2+
√
x,

then find its minimal polynomial.
> mp := evala@Minpoly:
> f := x → x2 +

√
x;

> mp(f(x), Y);
> minpoly := sort(%, Y);

Now verify that f is a root of the polynomial.
> subs(Y = f(x), minpoly);
> expand(%);

Compute an inverse for f .
> solve(Y = f(x), x);
> finv := %;

Proposition 4.5 says the inverse function f−1 satisfies the minimal polynomial of f with the vari-
ables interchanged (Y ↔ x).
> subs(x = finv, minpoly);
> simplify(%);
Did it work? Explain.

9. The (real-valued) Lambert-W function is a special function that is defined as the solution of the
equation yey = x for y. This function has import applications in quantum physics, biochemistry,
and applied mathematics.
Define the function f(x) = x · ex in Maple.
> f := x → x · exp(x);
Find the inverse function.
> finv := solve(y = f(x), x);

This inverse is analogous to arctan in that it has an infinite number of “branches”.
Let’s check it.
> ’f’(x) = f(x);
> LambertW(f(x)):
> simplify(%) assuming x > 0:
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> %% = %;

The other direction:
> f(LambertW(y));
> simplify(%) assuming y > 0;

To know more than you ever wanted, enter
> FunctionAdvisor(LambertW);

10. Proposition 5.1 states that if f(x) is algebraic, then f ′(x) is also algebraic.

(a) In Maple, define the absolute value A(x) = |x| and the signum S(x) =





1 x > 0

0 x = 0

−1 x < 0

func-

tions.

(b) Plot the two functions together with

> plot([A(x), S(x)], x = −2..2,−2..2, discont = [symbol = solidcircle]);

How do the functions appear to be related from looking at the graph?

(c) A(x) is algebraic as it satisfies the polynomial p(x, Y ) = Y 2 − x2. However S(x) is not
algebraic! (An algebraic function is continuous on its domain.) Explain how this does not
violate Proposition 5.1. Or does it? (Hint: Ask Maple to convert(diff(|x|, x), piecewise).)

11. Examine the trigonometric functions written in terms of ex and ln(x) for patterns by making charts
in Maple. Which of the functions in the charts are elementary functions?

(a) Trigonometric functions chart:
> T := ⟨ cos(x), sin(x), tan(x), sec(x), csc(x), cot(x) ⟩:
> Te := map(convert, T, expln):
> ⟨T | ⟨ ‘↔ ‘$6 ⟩ |Te ⟩ ;

(b) Inverse trigonometric functions chart:
> AT := ⟨ arccos(x), arctan(x), arcsin(x), arcsec(x), arccsc(x), arccot(x) ⟩:
> ATl := map(convert, AT, expln):
> ⟨AT | ⟨ ‘↔ ‘$6 ⟩ |ATl ⟩ ;
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Abstract

This study explores the integration of media arts with mathematics education through a focused
investigation of the Pythagorean theorem, aiming to elucidate how this interdisciplinary approach can
enhance student engagement and conceptual understanding. Recognizing the transformative potential
of technology in education, we specifically examine the use of digital media arts tools to teach this
foundational mathematical concept. Our research is motivated by the goal of leveraging technology to
create more engaging and effective learning experiences in mathematics, thereby addressing
challenges in teaching abstract concepts. We investigate the pedagogical benefits of integrating media
arts into mathematics education through a qualitative case study involving undergraduate research
assistants. The selection of the Pythagorean theorem as our focal point is justified by its critical
importance in geometry and its wide applicability across STEM fields. Our findings reveal that media
arts foster deeper engagement and facilitate a more comprehensive understanding of mathematical
principles among students. This paper contributes to the field by providing evidence-based insights
into the synergistic potential of combining media arts with mathematics education, underscoring the
value of innovative approaches in enhancing the learning and teaching of mathematics.

1. Introduction
Integrating science, technology, engineering, arts, and mathematics (STEAM) into 

educational curricula is not merely a trend but a vital evolution in teaching and learning 
methodologies. The inclusion of media arts within mathematics education emerges as a 
transformative method poised to redefine student engagement and learning outcomes. Media arts, 
encompassing digital arts, animation, game design, and more, offer unique avenues for creativity, 
expression, and exploration. Their application in mathematics education can significantly elevate 
student engagement, comprehension, retention, and practical application of complex mathematical 
concepts [1,2,3,4, 5].

The Pythagorean theorem, a fundamental principle in geometry, serves as an ideal case 
study for this integration. Despite its critical importance in numerous STEM fields, its abstract 
nature often challenges learners. Applying digital media arts as a pedagogical tool promises a more 
accessible, engaging, and comprehensive approach to this and similar mathematical concepts. 
Recent studies indicate that students exposed to STEAM approaches, particularly those 
incorporating media arts, show improved engagement and a deeper understanding of mathematical 
principles [5,6]. These findings highlight the potential of media arts to make abstract mathematical 
concepts more tangible and relatable, thereby fostering a more engaging and effective learning 
environment.

Our investigation is further motivated by the evolving role of technology in education and 
the imperative to leverage such advancements to enhance traditional teaching methodologies. This 
paper aims to contribute to the growing body of evidence supporting innovative STEAM education 
strategies by integrating media arts with the Pythagorean theorem study. Through a qualitative 
analysis of educational interventions that blend media arts with mathematics, we offer insights into 
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how such integrative approaches can enrich student engagement and facilitate a more nuanced 
understanding and appreciation of mathematical concepts. This forward-looking approach to 
STEAM education addresses the urgent need for engaging and effective educational strategies. By 
incorporating media arts into mathematics education, we leverage diverse creative expression and 
exploration avenues, enhancing student engagement and facilitating a deeper connection to 
mathematical concepts. This paper examines the integration process and outcomes, focusing on the 
Pythagorean theorem to highlight the abstract challenges often presented to students and proposing 
a multifaceted approach to overcome these barriers, thereby contributing valuable insights into the 
enrichment of STEAM education and underscoring the importance of interdisciplinary methods in 
fostering a comprehensive understanding of mathematics for the 21st century.

2. Theoretical Background
The integration of media arts into mathematics education is an evolving area of pedagogical 
research, increasingly recognized for its potential to enrich student engagement, enhance conceptual
understanding, and bolster knowledge retention. This theoretical foundation underpins our study, 
drawing upon various sources that illustrate this interdisciplinary approach's multifaceted benefits.

2.1 Student Engagement
Numerous studies have demonstrated increased student engagement and motivation to learn 

mathematical concepts by incorporating creative and body-based learning activities. Jeff et al. [7] 
found that engaging students in creative body-based learning activities significantly improved their 
attitudes toward mathematics. The authors noted that "students who previously showed little interest
in mathematics became intensely engaged" [7, p. 70]. This indicates that leveraging students' 
physical and creative expressions can make studying abstract mathematical ideas more appealing 
and approachable.

Similarly, Tracy et al. [8] revealed enhanced participation and focus when students were 
involved in activities that integrated movement and creativity into mathematics lessons. They found
that such approaches engaged students and supported long-term retention of mathematical concepts.
Tracy et al. [8] emphasized that "the hands-on process of creative activities was highly engaging 
and helped solidify students' understanding of geometric concepts" [p. 170]. Robyne and MacGill 
[9] explored the role of creative and body-based learning in fostering inclusion and found that these 
methodologies significantly increased motivation and comprehension among diverse student 
groups. They highlighted that "artistic aspects activate emotions and an aesthetic sense of 
mathematical beauty," thereby enhancing student engagement and interest in mathematics [ 9, p. 
1230].

Furthermore, An et al. [10] examined the impact of integrating music into mathematics 
lessons and found that this interdisciplinary approach improved elementary students' disposition 
towards mathematics. The study showed that "students' attitudes towards mathematics became more
positive when music was used as a medium for teaching mathematical concepts" [10, p. 15]. This 
body of research collectively underscores the critical role of student engagement in effective math 
education and points to the potential of creative and body-based learning integration to provide 
engaging, creative gateways for students to interact with and find meaning in mathematical ideas 
and processes.

2.2 Conceptual Understanding Enhanced Through Media Arts
The integration of media arts into mathematics education transcends mere student 

engagement, creating a powerful bridge between conceptual understanding and mastery of 
mathematical concepts. An enlightening 18-month ethnographic study by Peppler [2] illuminates 
this transformative potential, showcasing urban youth engaging with mathematics through media 
arts projects, from quilting to music production and breakdancing. This approach not only made 
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mathematics more accessible and meaningful but also demonstrated significant improvements in 
students' spatial reasoning, proportional logic skills, and pattern recognition—core competencies in 
mathematical thinking.

Echoing Peppler's findings, Bequette and Bequette [1] emphasize the critical role of 
integrating arts into STEM education. They argue that art and design provide unique contexts that 
stimulate an innovative and inquiry-based approach to learning, which is essential for the holistic 
understanding of STEM subjects, including mathematics. This foundational perspective suggests
that the arts are not peripheral but integral to fostering a deep, conceptual grasp of mathematical 
principles through creativity and design thinking.

Further supporting this notion, Laura and Kesteren [3] highlight the effectiveness of 
STEAM approaches in bridging the gap between the arts and STEM. They point out that STEAM 
education, which combines the analytical strengths of STEM disciplines with the creative and 
critical thinking fostered by the arts, leads to a more engaged learning experience. This engagement 
is pivotal for developing a nuanced understanding of mathematics, as it encourages students to 
apply mathematical concepts in diverse and creative ways, thereby deepening their understanding 
and mastery of the subject.

Moreover, Aibhín and Tangney's [5] work on digital art integration reinforces the idea that 
media art projects enhance mathematical understanding. Their research reveals that digital art 
projects engage students and challenge them to apply mathematical concepts in innovative contexts,
leading to a more profound comprehension of the material. This approach aligns with the broader 
objectives of STEAM education by marrying mathematics's abstract and logical aspects with the 
expressive and imaginative facets of the arts.

In essence, the fusion of media arts with mathematics education represents a paradigm shift 
in how we conceive of teaching and learning mathematics. It underscores the power of contextual, 
applied learning in deepening conceptual understanding and showcases the remarkable potential of 
media arts as a conduit for transformative educational experiences. By integrating media arts into 
the mathematics curriculum, educators can unlock new dimensions of understanding and 
appreciation for mathematics among students, fostering a generation of learners equipped with both 
the creative and analytical skills necessary for the challenges of the 21st century.

2.3 Knowledge Retention
The multimodal nature of media art production also seems to have benefits for encoding 

math concepts into memory. Studies by An et al. [10] found that having students physically 
manipulate materials to construct fractal geometry models out of paper or 3D print mathematical 
shapes improved knowledge retention over time. They posit that tapping into diverse sensory 
experiences beyond purely visual processing activates more brain areas when learning new 
mathematical information. Other research has also shown positive links between embodied 
cognition theory and STEAM education practices [11].

As this review outlines, integrating media arts activities into the math curriculum is strongly 
grounded in the latest educational research. Outcomes include heightened student engagement, 
improved conceptual mastery, and increased retention of mathematical knowledge over time. As 
Bequette and Bequette [1] advocate, “Artistic pursuits provide an excellent venue for reinforcing 
mathematical concepts and opening conversations that unravel the mystery of mathematics” [1, p. 
40]. Further research is still needed to develop specific best practices for STEAM integration 
models. However, the evidence thus far points to substantial benefits from blending creative arts, 
such as media production, with teaching mathematical topics and problem-solving.

3. Research Method
3.1 Research Objective and Rationale
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The primary objective of this study is to investigate how integrating media arts into 
mathematics education, specifically focusing on the Pythagorean theorem, can enhance student 
engagement, comprehension, and retention of mathematical concepts. The rationale behind this 
research is grounded in the potential of digital media arts to transform traditional mathematics 
teaching methods, making abstract concepts more accessible and engaging through creative and 
interactive digital tools. The Pythagorean theorem was chosen as the focal point of this study due to 
its fundamental role in mathematics and potential for creative exploration. Its selection was driven 
by the desire to explore a universally recognized and applicable concept across various fields, 
providing a robust foundation for integrating media arts. This decision also stems from preliminary 
discussions with participants, who identified the theorem as a mathematical concept that often 
presents challenges in understanding, thereby offering a valuable opportunity for innovation in 
teaching methods.

3.2 Participants
Our study engaged five undergraduate research assistants from the University of 

Southeastern US, each selected for their unique blend of expertise and interest in mathematics, arts, 
and technology. These individuals were involved in a specialized project to develop and pilot 
mathematics learning modules that intricately weave media arts into the curriculum centered around
the Pythagorean theorem. Their participation in this project was entirely voluntary, driven by a 
shared interest in exploring the intersection of digital media arts and mathematics education. This 
engagement offered them a unique opportunity to contribute to innovative educational strategies 
outside the traditional classroom setting. Their tasks within the project spanned from the conceptual
design of learning modules to the hands-on implementation of these educational tools, providing 
them with a comprehensive experience in the practical application of integrating media arts into 
mathematics education.

3.3 Data Collection Methods
The data collection process was meticulously designed to capture the essence of media arts 

integration into mathematics education. A collection of students' works—including digital graphics,
animations, and multimedia presentations—served as artifacts, evidencing the interplay between 
media arts and mathematics. Field notes taken during the project's development phases detailed the 
decision-making process, including platform selection and instructional design. These notes were 
complemented by team meeting recordings and brainstorming sessions, providing insight into the 
collaborative and innovative environment fostered among the participants. Focus group interviews 
were structured around specific questions aimed at understanding participants' experiences, such as:

 How did the integration of media arts influence your understanding of the Pythagorean 
theorem?

 What challenges and opportunities did you encounter while using digital platforms for 
mathematical exploration?

3.4 Platform Selection Criteria
In our study, we meticulously selected eight digital platforms from an initial review of more 

than twenty based on carefully defined criteria aligned with our pedagogical objectives. The 
platforms were evaluated using a comparison matrix in Table 1 to ensure they met the following 
criteria:

 User-Friendliness: Ensuring the platforms were intuitive and simple for students to navigate.
 Accessibility: Guaranteeing that students at different levels of technological proficiency 

could easily access and use the tools.
 Creative Potential: Favoring platforms offering extensive creative expression features

specifically tailored to mathematical concepts.
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 Relevance: Prioritizing platforms capable of facilitating a meaningful exploration of the 
Pythagorean theorem in innovative and pedagogically sound ways.

Platform User-
Friendliness

Accessibility Creative 
Potential

Relevance to Pythagorean 
Theorem

Adobe Creative Cloud 
Express 

High High High High

Video Poem Medium Medium High High
The Wick Editor High High High High
Code Scratch High High High High
Piskel App Medium Medium High Medium
AutoDraw High High Medium Medium
Adobe Voice Animator High High Medium Medium
Digital Krita Medium Medium High Medium

Table 1: Comparison Matrix of Selected Digital Platforms

3.5 Data Analysis
The thematic analysis [14] of data from field notes, student artifacts, and interview 

transcripts followed a structured approach to identify patterns and themes related to integrating
media arts and mathematics education. This method was chosen for its flexibility and effectiveness 
in exploring complex qualitative data, enabling a comprehensive understanding of participants' 
experiences and the educational impact of the project.

4. Implementation
In our innovative quest to integrate media arts with mathematics education, we focused 

specifically on the Pythagorean theorem. This endeavor led us beyond traditional teaching 
methodologies, aiming to highlight computational aspects of the theorem's foundational proofs, 
enriching students' conceptual understanding. Our comprehensive review of over twenty online 
media art platforms resulted in selecting eight distinguished for their pedagogical value, 
accessibility, creative potential, and user-friendliness: Adobe Creative Cloud Express, Video Poem, 
The Wick Editor, Code Scratch, Piskel App, AutoDraw, Adobe Voice Animator, and Digital Krita. 
These platforms were chosen for their exceptional potential to render abstract mathematical 
concepts into tangible and creative expressions, thereby elucidating the conceptual underpinnings of
the Pythagorean theorem.

The selected digital tools were meticulously aligned with our learning objectives, aimed at 
fostering an interactive and immersive exploration of the Pythagorean theorem. Adobe Creative 
Cloud Express in Figure 1, for instance, was utilized to craft visually engaging infographics 
elucidating the theorem’s principles, whereas Video Poem in Figure 2 facilitated students in 
articulating the theorem’s real-world applications through narrative storytelling. Similarly, The 
Wick Editor in Figure 3 and the Piskel App in Figure 4 enabled the creation of animations that 
contextualize the theorem in real-life scenarios, enhancing the accessibility and relatability of these 
abstract mathematical concepts.
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Figure 1: Adobe Creative Cloud Express

Figure 2: Video Poem, visit 
https://drive.google.com/file/d/1hvxhT24xTUTEyBuKFr2PzPb6iqmQZ7tb/view?usp=share_link

Figure 3: Wick Editor, visit

The Research Journal of Mathematics and Technology, Volume 14, Number 1 

Page 115 of 133

https://drive.google.com/file/d/1hvxhT24xTUTEyBuKFr2PzPb6iqmQZ7tb/view?usp=share_link


https://drive.google.com/file/d/1l6GxzZBMZjP4gcsRTmr5tckNyWMq1l5j/view?usp=share_link

Figure 4: Piskel App, visit
https://drive.google.com/file/d/1KDANicTYruywiF7VhzMF3YCX_ZMjjJkH/view?usp=share_link

Further, platforms like Code Scratch in Figure 5 and Adobe Voice Animator in Figure 6 
were pivotal in developing interactive simulations and animated stories depicting the Pythagorean 
theorem in action, promoting a hands-on learning experience. AutoDraw in Figure 7 and Digital 
Krita in Figure 8 provided unique avenues for students to depict the theorem's geometric principles 
through digital art, seamlessly merging art and mathematics.

To maximize the efficacy of these tools, scaffolded activities were meticulously designed, 
guiding students from foundational introductions to more elaborate projects. Adobe Creative Cloud 
Express was used to create infographics that visually broke down the theorem’s components and 
principles, serving as a foundation for further exploration. In Video Poem, students created 
narrative storytelling projects that tied the theorem’s principles to real-world scenarios, such as 
navigation and construction, enhancing their understanding through creative expression. The Wick 
Editor allowed students to create interactive animations, enabling them to manipulate geometric 
shapes to form right-angled triangles and visually prove the theorem, promoting hands-on 
exploration. Code Scratch involved students in developing a game that required players to construct
proofs of the Pythagorean theorem, encouraging critical thinking about geometric relationships and 
properties. Piskel App and Adobe Voice Animator were used to create pixel art and animated 
stories that depicted the theorem’s principles in action, enhancing understanding through visual and 
interactive engagement. AutoDraw helped students sketch and label diagrams of right-angled 
triangles, experimenting with different configurations to internalize the theorem’s logic. Digital 
Krita facilitated detailed visualizations of the theorem’s proof, supporting reflective and exploratory
activities.

These activities were instrumental in encouraging students to actively engage with the 
Pythagorean theorem—creating posters, animations, games, and digital artwork—thus deepening 
their understanding and practical application of the mathematical concepts. This pedagogical 
strategy aimed to transform students from passive learners to active creators, employing media arts 
as a medium to visualize, explore, and internalize mathematical ideas.
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Figure 5: Code Scratch, visit pythag-theo.netlify.app

Figure 6: Adobe Voice Animator, visit 
https://drive.google.com/file/d/1Kvpw0_q6GlmXLpz8q9qUyvR62oeCg8rL/view?usp=sharing

Figure 7: AutoDraw
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Figure 8: Digital Krita

Our approach to integrating media arts into mathematics education aimed to bolster students'
comprehension of the Pythagorean theorem, instilling a sense of ownership and enthusiasm for 
learning. By offering diverse and innovative outlets for expression, we encouraged students to 
venture beyond traditional mathematical boundaries, fostering a deeper, more personal connection 
with the subject. This innovative methodology demonstrates that when students are equipped with 
creative tools to express and manipulate mathematical concepts, their engagement, understanding, 
and retention of these concepts are significantly enhanced.

Figures 1 through 8 serve as a testament to this approach, showcasing student-created 
artifacts that perform calculations and explore the theorem's proof, embodying higher-order 
thinking. These artifacts underscore the viability of media arts integration in mathematics, paving 
the way for future applications beyond the Pythagorean theorem and contributing to the evolving 
discourse on STEAM education.

5. Findings
Our exploration into integrating media arts with the Pythagorean theorem uncovered 

insights that transcend traditional learning outcomes. Through the qualitative analysis of 
observations, student artifacts, and focus group interviews, we discovered that our approach 
significantly bolstered engagement, comprehension, and the retention of mathematical concepts.

5.1 Enhanced Visualization and Interactivity
Notably, our investigation revealed that students' engagement with digital platforms did 

more than bring the theorem's concepts to life; it also facilitated a deeper understanding of its proof.
An illustrative student project used The Wick Editor in Figure 9 to depict the theorem in a real-
world context and animate the step-by-step logic of the proof itself, offering a tangible insight into 
its foundational truth.
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Figure 9: Wick Editor, Animating the Step-by-Step Proof of the Pythagorean Theorem

5.2 Creativity and Personalized Learning
The integration of media arts also allowed students to examine the theorem’s proofs 

creatively. A standout video poem in the Figure 10 project tied the theorem's principles to 
architectural design, encouraging students to think critically about the geometric proof underlying 
their creative expressions.

Fig
ure
10:

Video Poems, Narrative Story of the Pythagorean Theorem

5.3 21st Century Skill Building
The creation of media art projects focusing on the Pythagorean theorem's proof significantly

enhanced students' technological literacy, critical thinking, and problem-solving abilities. A 
collaborative project in Code Scratch, illustrated in Figure 11, involved students using a structured 
process to create representations of the Pythagorean theorem and develop practice exercises to 
answer related questions. The process included configuring a concept through brainstorming and 
research, sketching and selecting a design, creating and merging required assets, moving these 
assets to Code Scratch, inputting appropriate commands and codes, and finalizing and rendering the
game. The resulting game, which challenged users to construct proofs of the theorem, exemplified 
how digital tools could be harnessed to reinforce mathematical reasoning skills. This interactive 

The Research Journal of Mathematics and Technology, Volume 14, Number 1 

Page 119 of 133



approach reinforced their understanding of the theorem and enhanced their problem-solving skills, 
ensuring that students thoroughly understood the content by applying their knowledge in various 
contexts.

Figure 11: Code Scratch for Understanding and Applying the Pythagorean Theorem

5.4 Metacognition and Conceptual Understanding
By creating personalized representations that highlighted the theorem’s proof, students 

underwent a reflective process that deepened their conceptual understanding. A digital art piece 
using Digital Krita, which visually dissected the proof, exemplified how students could explore and 
internalize the geometric principles underlying the Pythagorean theorem.

These findings underscore the significant potential of integrating media arts into 
mathematics education. By providing avenues for students to creatively express and critically 
engage with mathematical concepts, especially through the exploration of proofs, our study 
demonstrates the value of innovative and hands-on learning experiences in fostering a deeper 
understanding of mathematics. This approach not only enhances student engagement and 
understanding but also cultivates a profound appreciation for the beauty and logic of mathematical 
proofs, marking a meaningful contribution to the field of STEAM education.

6. Discussion
Our investigation into integrating media arts within the Pythagorean theorem's educational 

framework marks a significant advancement in the interdisciplinary STEAM dialogue. Through a 
focused application of digital media arts, this research not only aligns with but also extends the 
foundational insights provided by Bequette and Bequette [1], Peppler [2], and others [3,4] on the 
fusion of arts and STEM education. Our study underscores the unique pedagogical value of 
employing digital media to foster a deeper engagement and understanding of mathematical 
concepts, notably the Pythagorean theorem.

Echoing the sentiments of Laura and Kesteren [3] and Pavel [4] on the positive impacts of 
arts integration, our findings reveal that media arts play a crucial role in demystifying complex 
mathematical ideas. This is further supported by the empirical evidence from Aibhín and Tangney 
[5] and Teaching Mathematics through Art Using Digital Technologies [6], highlighting digital 
media's capability to significantly bolster mathematical engagement and comprehension. Our 
research diverges by providing a granular look at how specific digital tools captivate students and
enhance their grasp of mathematical fundamentals through creative exploration.
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The diversity in media arts applications in mathematics education, ranging from creative 
body-based learning [7] to fostering motivation and engagement through qualitative teacher-student
interactions [8], illustrates the wide spectrum of creative approaches that can augment learning 
outcomes. Our study contributes novel insights into this array by showcasing the successful 
application of creative computing [16] and digital storytelling [15] to illuminate the Pythagorean 
theorem, reinforcing the utility of such innovative pedagogical strategies. Additionally, integrating 
creative and body-based learning methods supports diverse learners and fosters inclusion in 
educational settings [9].

7. Conclusion
By integrating media arts into the teaching of the Pythagorean theorem, our study 

illuminates a pathway for transforming mathematics education. Our empirical evidence 
corroborates the existing advocacy for blending arts and technology [1,2,3] and illuminates specific 
digital media arts tools' roles in deepening mathematical understanding. Our findings extend beyond
the realm of the Pythagorean theorem, suggesting a flexible and impactful methodology for 
incorporating media arts across various mathematical topics.

This adaptability is particularly crucial for meeting the educational demands of the 21st 
century, where bridging traditional disciplinary divides and leveraging technological advancements 
becomes essential. Therefore, our investigation contributes to the ongoing evolution of STEAM 
education and opens new avenues for research. By demonstrating the practical application of media 
arts to clarify and engage with fundamental mathematical concepts, we underline the effectiveness 
of creative pedagogical strategies in enhancing educational experiences and outcomes.

Inspired by the groundwork laid in this study, future research promises to further broaden
the scope of STEAM education. By exploring the integration of media arts in other mathematical 
areas, we can continue to innovate and enrich teaching and learning practices, equipping students 
with the critical, creative, and technological skills necessary for their future success.

Our study enriches the STEAM education discourse by offering detailed insights into the 
application of media arts within mathematics education. It aligns with the burgeoning body of 
literature advocating for the arts and technology merger and charts new territories for how this 
integration can be specifically tailored to enhance mathematics teaching and learning.
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Abstract
In this study, 400 randomly selected mathematics tasks in a widely used LMS in Finland designed to function as
electronic learning platform for mathematics for primary and secondary school pupils were analysed using
conceptual and procedural knowledge-based emphases. The analysis showed that approximately 29% of the
selected 400 math problems emphasized conceptual knowledge. The results of this study suggest that the LMS
consists of more math tasks emphasizing procedural knowledge than conceptual knowledge at primary and
secondary school levels. These results are similar to the former findings of studies on Finnish mathematics
textbooks. It can be concluded that mathematics tasks in the LMS promote the learning of procedural knowledge,
but the criticisms regarding the materials and their versatility are still relevant. Understanding how conceptual
and procedural knowledge is emphasized in different LMS helps current and future teachers to select and adapt
teaching and learning materials and methods to better meet the needs of their students.

1. Introduction

A learning environment is often conceptualized as an environment where learning takes 
place. Typical dimensions of a learning environment include physical, social, technological, and 
pedagogical perspectives (e.g. [1], [2]). As teachers work in these learning environments, they must 
plan how to design environments to support students’ learning as well as how to utilize the learning 
environments that they are provided. From this perspective, a theoretical framework known as The 
Activity-Centred Analysis and Design (ACAD) has been developed, which approaches the learning 
environments from the perspective of affordances (see e.g. [3], [4]). These various affordances are 
classified into three distinct categories: social, physical, and epistemic [4]. The idea in the 
framework is that teachers design the affordances for the learning environments before the teaching 
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sessions, and during the session through active use of these different affordances the emerging 
learning environment is formed. Within this framework, social affordances refer to various social 
formations available in the classroom or online platform. Physical or set affordances include all the 
tools, artifacts, resources, and technologies. Epistemic affordances, for their part, are primarily 
focused on the tasks, sequences, and pace of tasks and content.

In this study, LMS is defined with reference to the research by Chaubey and Bhattacharya 
[9] as follows: LMS is a software application or web-based technology used to plan, implement, 
and evaluate a specific learning process [9]. The LMS platform of this study provides teachers with 
versatile tools for learning management and teaching [7]. It provides students and teachers 
opportunities for interactive and flexible mathematics learning, but it also helps students to improve
their calculation skills and induce motivation to study mathematics [8], [10]. The LMS provides 
teachers with ready-made task repositories and learning paths that are already designed to suit, for 
example, a certain grade level. This LMS system is primarily used in the classroom or at home in 
addition to other study material. The LMS examined in this study considers the perspective of 
assessment by providing learning analytics data to both students and teachers about the completion 
of tasks, time use, and the correctness of answers. In this LMS system, teachers can also modify 
existing task repositories, create their own tasks, and choose the tasks they consider suitable for 
their students. For teachers to modify existing task repositories, they should consider what kind of 
epistemic affordances the tasks in the LMS system and repositories generally contain. The LMS of 
this study is widely used in Finland primary and secondary schools.

A key question that arises in this context is how to ensure the availability of high-quality 
mathematics teaching and learning materials in the digital learning environments and LMS because 
PISA results have suggested that transferring pencil-and-paper mathematical tasks as they are to 
electronic environments may decrease students’ performance [11]. The goal of this study is to shed 
light on how conceptual and procedural knowledge is emphasized in mathematics tasks by primary 
and secondary school levels. Specifically, information is obtained about the type of content 
included in the tasks of the LMS system. 

2.  The need to assess conceptual and procedural knowledge of the mathematics 
tasks

The quality of mathematics tasks can be viewed from the perspective of mathematical 
content, which involves using theory to classify mathematical knowledge. A well-known theory in 
this regard separates procedural and conceptual aspects of mathematical knowledge [12], [13]. After
an analysis of researchers' views, Haapasalo and Kadijevich [14] suggested the following 
characterization that fits viable theories of teaching and learning: Conceptual knowledge can be 
defined as an understanding of how concepts and problems form a network with each other. 
Haapasalo and Kadijevich [14] referred to the concepts in this semantic network as nodes and the 
connections between them as links. According to them, conceptual knowledge also includes the 
ability to navigate this network flexibly and to find concepts and their properties that are suitable for
each situation or problem. Conceptual knowledge included the concepts, principles and 
relationships underlying the mathematical subject area and their understanding [12], [15]. More 
specifically, this included interpretation and construction of concepts and their attributes, 
procedures, functions, and perspectives [14]. Procedural knowledge can be defined as the ability to 
use and represent rules, algorithms, and procedures [12]. Haapasalo and Kadijevich [14] saw the 
foundation of procedural knowledge as processes formed by sequentially executed operations. 
Procedural knowledge referred to the dynamic and purposeful execution of rules, methods, or 
algorithms using certain presentation methods [14]. Therefore, procedural knowledge meant the 
ability to recognize the steps of a process and understand how the next step is carried out.
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According to Haapasalo and Kadijevich [14], [16], [17] solving a math task utilization of 
conceptual knowledge typically required conscious thinking and knowledge of why the task is 
being solved, while procedural knowledge may consist of automated and subconscious steps. When 
solving a math task, the utilization of procedural information required the execution of automated 
calculation routines and knowledge of how to solve the task efficiently and accurately [12], [15], 
[16], [17]. In this case, there was a dynamic relationship between the two types of knowledge, and a
clear boundary between them cannot be defined. Haapasalo [18] suggested that when solving a 
problem relying on procedural knowledge, two related rules can be successfully combined without 
understanding the underlying justifications. In general, conceptual, and procedural knowledge are 
strongly interconnected, and both are needed in solving many problems.

Research literature helps to group mathematics tasks into procedurally or conceptually 
focused areas [12], [15], [16], [19], [20] [21]. The complexity of tasks can be influenced by the 
number of procedures or concepts required to solve the task [21]. For example, Authors [22] 
presented a four-category classification tool that considers the complexity of tasks when evaluating 
procedural and conceptual knowledge within them. Haapasalo [20] also presented in his work a way
to classify mathematics tasks utilizing conceptual and procedural knowledge. Additionally, Phuong 
[21] introduced a PCK taxonomy that can be utilized for classifying tasks and used in assessing
students' mathematics learning.

Star [23] aimed to challenge the notion that procedural knowledge is shallow while 
conceptual knowledge is deep. For instance, she offered the concept of deep procedural knowledge, 
which included procedural flexibility that allows an individual to choose the most suitable method 
from various options in a problem-solving situation, such as solving an equation. On the other hand,
knowledge of the relationships between concepts can be quite deficient and superficial, based on 
rote memorization rather than true comprehension.

When examining mathematics teaching practices, whether teachers should teach 
mathematics for procedural knowledge, conceptual knowledge, or a combination of the two is a 
question that arises [13]. This question can be examined through learning materials and 
mathematical tasks. The procedural–conceptual nature of mathematical tasks is revealed to each 
student individually based on the student’s existing knowledge and skills [24], [25], [26], [27], 
although mathematical task can be designed to be conceptually or procedurally oriented [15], [16], 
[18], [20], [21], [28]. From the point of view of primary school teachers’ professional relevance, 
mathematics textbooks are central because they are one of the most common epistemic affordances 
of mathematics in classroom [4] and the tasks given in textbooks shape learners’ perceptions of 
mathematical knowledge [29], [30].

The construction of connections between concepts can also be supported by other 
educational means, such as by using functional teaching and learning methods, increasing the use of
illustration tools [31], or strengthening the role of interactions in learning mathematics [32]. In 
teaching arrangements, technology can create opportunities for dialogue about the emphasis on 
mathematical knowledge [33].  Many LMS systems enable the creation and introduction of 
conceptual tasks as part of the study of mathematics, making it possible to balance the dialogue 
around conceptual and procedural emphases in the mathematics learning process. According to 
Hurrell [34], mathematics teaching and learning materials should emphasize conceptual knowledge 
as this would allow learners to develop mathematical competence. In addition, mastering a 
calculation method without a conceptual understanding behind it does not produce permanent or 
very sustainable knowledge of the matter.  

Research suggests that both conceptual and procedural knowledge are important for learning
mathematics, and that the balance between the two are crucial for student achievement [7], [36]. A 
balanced approach to mathematics instruction should emphasize the development of both 
conceptual and procedural knowledge. Studies have suggested that students who have a strong 
conceptual knowledge of mathematics tend to perform better on math assessments and are better 
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able to transfer their learning to new situations than students who lack this conceptual knowledge 
[36]. Procedural knowledge is also important for success on math assessments, especially for tasks 
that involve routine calculations or basic algorithms [15].

The effectiveness of mathematics tasks in promoting a balance between conceptual and 
procedural knowledge depends on several factors, such as the quality of tasks, teacher, and the 
background knowledge and motivation of the students. Well-designed mathematics tasks provide 
students with opportunities to develop both conceptual and procedural knowledge and encourage 
them to make connections between the two [37]. However, it should also be noted that other factors,
such as how teachers use mathematics curriculum materials, may be more important in influencing 
student achievement than the balance of conceptual and procedural knowledge in mathematics 
learning materials [38], [39].

The findings of researchers on the biases in textbooks are causing serious concern in 
Finland. In Joutsenlahti’s and Vainiopää’s [19], [40] analysis studies, more than 80 percent of the 
tasks in Finnish elementary school mathematics textbooks turned out to be procedurally weighted. 
According to these researchers, the examination of mathematical concepts in textbooks was 
superficial and did not support the formation of connections between concepts. According to 
Viholainen et al. [41], Finnish secondary school mathematics textbooks emphasized mathematical 
procedures more than concepts and the connections between them. 

Therefore, teachers should be made aware of contemporary research and literature on 
procedural and conceptual knowledge so that they can make informed decisions when selecting 
appropriate epistemic affordances of mathematics, such as the math tasks and the learning 
environments [45]. In addition, teachers’ understanding about how the conceptual and procedural 
types of knowledge are emphasized in math tasks is essential when an LMS is used in the math 
classroom. This is especially true when the implemented technology offers the opportunities to 
choose whether to focused on the fluency of calculations and the execution of algorithms, which 
further contributed to develop students’ understanding of mathematical concepts, or to focus on 
understanding concepts, which serves to develop calculations and the execution of algorithms [13], 
[18], [34].

3. Research Questions and Methods

This study examined epistemic affordances in a widely used LMS in Finland based on 
procedural and conceptual knowledge. An awareness of the procedural and conceptual knowledge 
involved in mathematical tasks can provide teachers with valuable information for choosing tasks 
when creating teaching and learning environments. As such, two research questions were 
formulated for this study:

Q1. What is the epistemic affordance of the LMS in primary school mathematics task examined 
from the perspective of conceptual and procedural knowledge?

Q2. What is the epistemic affordance of the LMS in secondary school mathematics task examined 
from the perspective of conceptual and procedural knowledge?

In this study, the epistemic affordance was formed from 400 electronic math tasks in the 
LMS which were randomly selected. The tasks were chosen based on a simple random sampling. In
all, 220 of 881 tasks were selected from Mathematics, Task Bank Primary School 2022–2023 in 
LMS, and 180 of 872 tasks were selected from Mathematics, Task Bank Secondary School 
2022–2023. Both task banks are freely available to all teachers who have credentials to use the 
LMS and teachers can use the tasks as resources to develop their own courses in the LMS.
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The analysis framework used in this study was built within the research group and has been 
used in two peer-reviewed articles [22], [42].  In this study, the analysis was conducted in three 
stages. In the first stage, the first author performed preliminary analysis by categorizing 400 
mathematics tasks using the analysis framework [22], [42]. In the second stage, 120 of the 400 tasks
(30%) were randomly selected for analysis by two other authors to enhance the inter-rater reliability
of the categorization by Krippedorff’s alpha values [43]. These 120 tasks were distributed into 66 
elementary school tasks and 54 middle school tasks. Discrepancies in classification were resolved 
through consensus discussions to strengthen classification principles. Krippendorff’s alpha values 
were calculated for the primary school (ᵯ� =  0 . 83) and secondary school (ᵯ� =  0 . 90) task 
classifications. Both Krippendorff’s alpha values considered acceptable (ᵯ� > 0 . 80) [53].  In the 
third stage, the first author corrected the results of the preliminary analysis according to the 
established classification principles, and the analysis was completed. The results are reported in 
Tables 2 and 3. The tasks were analysed and classified into four categories in following way. Tasks 
requiring only symbolic representations and successive executions of the same algorithm or 
calculation to produce solutions fell into the categories of simple or complex procedural tasks. Task 
that can be solved with a one calculation and only require symbolic representations was classified 
the category of simple procedural tasks (see Table 1 for examples). When task solutions required 
more complex algorithms, or the execution of several algorithms or calculations was necessary, the 
task was classified into the category of the complex procedural task (see Table 1 for examples).

 Tasks requiring connections between multiple representations, not only the symbolic form, 
fell into the category of simple or complex conceptual tasks. The task was classified into the 
category of simple conceptual tasks if it required identifying and ordering the different stages of the 
calculation. Typically, in the analysis, the solution required connections between multiple 
representations, not only symbolic form. (See Figure 5 and 6 for examples). Tasks were identified 
into the category of complex conceptual tasks when the concepts were presented in an open 
problem-solving format. The emphasis was on making decisions about the concepts or parts needed 
for the solution, as well as on organizing the connections between the parts and different types of 
representations to produce the solution (see Figure 7 and 8 for examples).

4. Results
This section first presents the basis for classifying tasks into four categories with the help of 
examples. After this, research questions 1 (Table 2) and 2 (Table 3) are examined using tabulation. 
Table 1 shows examples of procedurally weight tasks that emphasize procedural knowledge at 
Primary and Secondary school levels. 

Table1: Examples of procedurally weighted tasks at Primary School and Secondary School
Procedural task types Example

1. A Simple Procedural Mathematics Task
at the Primary School Level

3

3
−

1

3
=

2. A Simple Procedural Mathematics Task
at the Secondary School Level

− 4 − (2) =

3. A Complex Procedural Mathematics 
Task at the Primary School Level

    3 , 9
  −   1 , 1

4. A Complex Procedural Mathematics 
Task at the Secondary School Level

Calculate, when ᵆ� = 7 .  10 ∙ ᵆ� + 8
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Table 1 shows that the solution to tasks 1 and 2 is obtained by performing one subtraction 
operation. Therefore, these two tasks are examples of simple procedural tasks. For task 3 and 4, the 
solution is obtained by performing more than one calculation operation. Thus, these two tasks are 
examples of complex procedural tasks.

In each of the tasks below (Figures 1 and 2), generating a solution requires identifying and 
ordering the stages involved in the calculation. In Figure 1, subtraction calculation skills are not 
necessarily needed due to the pictorial representation provided.  In Figure 2, equations and non-
equations need to be recognized and classified. Thus, these two tasks are examples of simple 
conceptual tasks.

Figure 1: A Simple Conceptual Mathematics Task at the Primary School Level

3-(x+1) x+x x-(1-x)=5 2x+1

5x x+13 x+5=10 5x=5

Equations Non-equations

Figure 2: A Simple Conceptual Mathematics Task at the Secondary School Level.

The tasks below (Figures 3 and 4) are both presented in a problem-solving format, and 
decisions need to be made about the operations required to produce the solutions. Figure 3 requires 
identifying the rule behind the sequence and producing the solution. In Figure 4, a decision needs to
be made about the order and kinds of calculations to be used to produce the solution. Thus, these 
two tasks represent complex conceptual tasks.

60 57 45 42

Figure 3: Complex conceptual mathematics task (primary school)
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Figure 4. Solve x. Complex conceptual mathematics task (secondary school)

Based on the content analysis, 400 electronic mathematical tasks were classified into four 
categories. As shown in Table 2, 285 tasks emphasized procedural knowledge, and 115 emphasized 
conceptual knowledge. The greatest percent of tasks were procedurally complex mathematical 
tasks, and the least percentage of tasks were conceptually complex tasks. The number of tasks 
emphasizing procedural knowledge was two and a half times the number of tasks emphasizing 
conceptual knowledge.  Interestingly, there were more complex procedural tasks than simple 
procedural tasks. In contrast, there were almost four times as many simple conceptual tasks 
compared to complex conceptual tasks.

Table 2. 400 Math Tasks Classified Based on Conceptual and Procedural Knowledge and Difficulty
(Simple or Complex)

Task type Simple Complex Total
Procedural 123 (30 %) 162 (41 %) 285 (71 %)
Conceptual 91 (23 %) 24 (6 %) 115 (29 %)

Table 3 shows how the 400 mathematical tasks were classified into four categories based on 
school level.  In comparison to examining the set as a whole, there are several differences. For 
example, the number of procedural tasks in the primary school is almost triple that of the conceptual
tasks. However, that same comparison is only double at the secondary school. Additionally, there 
are over 8 times as many simple conceptual tasks at the primary level, while a little over twice as 
many at the secondary level.

Table 3. 400 Math Tasks Classified Based on Conceptual and Procedural Knowledge and Difficulty
by School Level (Primary and Secondary)

Task type Primary school Secondary school
Simple procedural tasks 76 (35 %) 47 (26 %)
Complex procedural tasks 88 (40 %) 74 (41 %)
Simple conceptual tasks 50 (22 %) 41 (23 %)
Complex conceptual tasks 6 (3 %) 18 (10 %)

5. Conclusions and Discussion

The focus of this study was on analyzing freely available mathematics tasks in the LMS as 
epistemic affordance of primary and secondary school mathematics based on whether the task 
emphasized conceptual or procedural knowledge and the difficulty of the tasks. The results of this 
study showed that the tasks as an epistemic affordance consist of more math tasks emphasizing 
procedural knowledge than conceptual knowledge at both school levels. The most tasks were 
categorized to the category of complex procedural tasks at both school levels. It can be noted that 
when comparing primary school tasks to secondary school tasks, the number of simple procedural 
tasks decreased, and the number of complex conceptual tasks increased. However, the percentage of
complex procedural and simple conceptual tasks were comparable between the two school levels.
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This study has some factors related to its reliability and generalizability, which should be 
considered when interpreting the results and conclusions. First, the research is repeatable using the 
analysis framework and task banks since the tasks are easily accessible. Second, the randomly 
selected task sample was large enough (approx. 25% of all tasks), but this must be considered when 
generalizing the research results. The findings of this study cannot be generalized to all materials 
obtained from the LMS. It is possible that some other materials in the LMS, such as grade-specific 
mathematics study paths, contain tasks that emphasize conceptual knowledge more than the 
materials selected for this study do. Third, the analysis framework used in this study is scientifically
reported. In addition, the reliability of this study and classification was confirmed by calculating 
Krippendorff's alpha values, but it was only done for 120 tasks. In addition, the discriminating 
ability of the analysis framework and the classification model can be considered good, but placing 
the task in one of the four categories requires the researcher's own interpretations and decision-
making, which requires good theoretical knowledge. Thus, caution should be exercised when 
generalizing the results of this study.

 The results that there are more procedurally weighted tasks than conceptually weighted 
tasks are nearly similar to the findings results of Finnish mathematics textbooks [19], [40], [41]. 
Based on the results (Table2), 71 percent of tasks still seemed to focus on procedural knowledge, 
and complex procedural tasks were the most common tasks at both school levels. It can be 
concluded that mathematics tasks in the LMS emphasized the learning of procedural knowledge [7], 
[8], [10]. For this reason, criticisms regarding the materials and their versatility, which emerged 
based on earlier research, are still relevant. When mathematics tasks from textbooks are transferred 
to the LMS without adaptation, their conceptual–procedural emphasis does not change, only the 
format changes. In such a case, the possibilities of the LMS as an epistemic affordance to promote 
the exploration and manipulation of mathematical concepts to achieve conceptual knowledge will 
be forgotten [5], [7].

Results reveal that mathematics tasks in LMS also promote the learning of conceptual 
knowledge at both school levels and this trend can be considered good. Based on the distribution of 
tasks, the situation compared to the mathematics textbooks seems to have improved in that the 
primary school LMS and the secondary school LMS appear to integrate slightly more conceptual 
tasks, but the primary school LMS more closely aligns with the previous textbook studies [19], [40],
[41]. The lower number of conceptual tasks in the sample may explain that not all tasks are suitable 
for automatic checking, and it is easier and faster to perform repetitive tasks aimed at fluency in 
counting.

From the perspective of teachers and teacher education, this research provides information 
about each LMS and its potential in the planning, implementation, and evaluation of mathematical 
tasks. Recommendations for the use of various electronic learning environments and the LMS come
from the Finnish National Core Curriculum for Basic Education 2014, which underlines the 
significant role of ICT in mathematics across all grade levels [44]. For this reason, a variety of 
technologies are increasingly being used in mathematics classrooms. It is possible to balance 
epistemic affordance in the LMS by analysing and reviewing the conceptual and procedural 
emphases of mathematical tasks with the framework used in this study [22], [42].

Differentiating conceptual and procedural knowledge from each other is both a theoretically 
and methodologically demanding task [14]. The teacher’s knowledge, skills, and abilities in 
selecting and assigning mathematics tasks in the LMS, utilizing both conceptual and procedural 
knowledge, become necessary [34]. For teachers to effectively select tasks based on knowledge 
emphasis, it is crucial for them to recognize how conceptual and procedural knowledge are 
emphasized in various mathematics tasks [33], [34]. Understanding how conceptual and procedural 
knowledge is emphasized in different LMS tasks will help current and future teachers select and 
adapt teaching materials and methods to meet the needs of their students.

The Research Journal of Mathematics and Technology, Volume 14, Number 1 

Page 130 of 133



It is notable that there are not any components in the two LMS and task repositories to help 
teachers meet their classroom needs of procedural and conceptual knowledge, but the LMS is 
flexible and facilitates quick material updates. For this reason, its potential to promote learning of 
conceptual knowledge can be viewed from two perspectives of epistemic affordance. Firstly, the 
epistemic affordance of tasks emphasizing conceptual knowledge in the LMS can be increased. 
Secondly, the existing epistemic affordance of the LMS can be improved by adding information 
about the classification of the conceptual and procedural knowledge of the tasks.
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